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Let X = I[1,00) (X)-
Then X = (Xi,...,X,) is BMD with f;(Z) =1 — e (%)
If \;/(Z) << 1 we get for the number N =37 . X; ~ 37| X; of
defaults: y ~ ~
N|Z ~ Poisson(\(Z)), where A = >, \i(Z).
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Assumptions :
» Z is univariate (i.e. there is only one risk factor)
> fi=f, forallie{1,2,...,n}
We have P(X; = 1|Z) = f(Z), Vi; N|Z =Y__, X; ~ Bin(n, f(Z)).

The unconditional probability of default of the first k debtors is
P(X;=1,...,.Xk=1,Xk41=0,...,X,=0) =
EPX1=1,..., Xk =1,X411=0,...,X,=0]2)) =
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Let G be the distribution function of Z. Then
P(X;=1,...,.Xk=1,Xk41=0,...,X,=0) =

Jo F(2) (1 = f(2))"*d(G(2))

The distribution of the number N of defaults:

e == () [ rera - ey taee)
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The beta-mixture distribution

Let Z ~ Beta(a, b) and f(z) = z.

The d.f. g of Z is given as g(z) = g52° (1 —2)°~, for a,b > 0,
z € (0,1), where §(a, b) = [, 2" }(1 — z)>~'dz is the Euler beta
function.

The distribution of the number of defaults:

k) = (:) /01 2(1-2)"*g(z)dz = (Z) 5(31, ) /01 22tk (1 Z)n kb1,

(g

is the beta-binomial distribution

The probit-normal mixture
is obtained with Z ~ N(0,1), f(z) = ¢(n+ 0z), p € R, o > 0, where ¢
is the standard normal distribution.

The logit-normal mixture
is with Z ~ N(0,1), f(z) = (1 +exp{p+0z})™}, pn€R, 0 > 0.



CreditRisk™ - a Poisson mixture model



CreditRisk™ - a Poisson mixture model

(developed by CSFB in 1997, see Crouhy et al. (2000) and
www.credit_suisse.com/investment_banking/research/en/credit_risk. jsp



CreditRisk™ - a Poisson mixture model

(developed by CSFB in 1997, see Crouhy et al. (2000) and
www.credit_suisse.com/investment_banking/research/en/credit_risk. jsp

Consider m independent risik factors Zi, 25, ..., Zm, Zj ~ [(a}, B3;),
Jj=1,2,...,m, with parameter o;, 3; generally choosen such that such
that E(Z;) = 1.



CreditRisk™ - a Poisson mixture model

(developed by CSFB in 1997, see Crouhy et al. (2000) and
www.credit_suisse.com/investment_banking/research/en/credit_risk. jsp

Consider m independent risik factors Zi, 25, ..., Zm, Zj ~ [(a}, B3;),
Jj=1,2,...,m, with parameter o;, 3; generally choosen such that such
that E(Z;) = 1.

Let \;(2) :_/_\,- oy aiZy, >t ay =1fori=1,2,...,n for some
parameters \; > 0.



CreditRisk™ - a Poisson mixture model

(developed by CSFB in 1997, see Crouhy et al. (2000) and
www.credit_suisse.com/investment_banking/research/en/credit_risk. jsp

Consider m independent risik factors Zi, 25, ..., Zm, Zj ~ [(a}, B3;),
Jj=1,2,...,m, with parameter o;, 3; generally choosen such that such
that E(Z;) = 1.

Let \;(2) :_/_\,- oy aiZy, > ay = 1fori=1,2,...,n for some
parameters \; > 0. Then E (A\;{(Z)) = A; > 0) holds.



CreditRisk™ - a Poisson mixture model

(developed by CSFB in 1997, see Crouhy et al. (2000) and
www.credit_suisse.com/investment_banking/research/en/credit_risk. jsp

Consider m independent risik factors Zi, 25, ..., Zm, Zj ~ [(a}, B3;),
Jj=1,2,...,m, with parameter o;, 3; generally choosen such that such
that E(Z;) = 1.

Let \;(2) :_/_\,- oy aiZy, > ay = 1fori=1,2,...,n for some
parameters \; > 0. Then E (A\;{(Z)) = A; > 0) holds.

2%t exp{—2z/B;}

The density function of Z; is given as f;(z) = o)
i



CreditRisk™ - a Poisson mixture model

(developed by CSFB in 1997, see Crouhy et al. (2000) and
www.credit_suisse.com/investment_banking/research/en/credit_risk. jsp

Consider m independent risik factors Zi, 25, ..., Zm, Zj ~ [(a}, B3;),
Jj=1,2,...,m, with parameter o;, 3; generally choosen such that such
that E(Z;) = 1.
Let \;(2) :_/_\,- oy aiZy, > ay = 1fori=1,2,...,n for some
parameters \; > 0. Then E (A\;{(Z)) = A; > 0) holds.
z“ffltejp{—z/ﬂj}

Bj T(ay)
The loss given default for debtor i is LGD; = (1 — A;)L;, 1 < i< n,
where )\; is the expected deterministic recovery rate and L; is the amount
of credit J.

The density function of Z; is given as f;(z) =



CreditRisk™ - a Poisson mixture model

(developed by CSFB in 1997, see Crouhy et al. (2000) and
www.credit_suisse.com/investment_banking/research/en/credit_risk. jsp

Consider m independent risik factors Zi, 25, ..., Zm, Zj ~ [(a}, B3;),
Jj=1,2,...,m, with parameter o;, 3; generally choosen such that such
that E(Z;) = 1.
Let \;(2) :_/_\,- oy aiZy, > ay = 1fori=1,2,...,n for some
parameters \; > 0. Then E (A\;{(Z)) = A; > 0) holds.
z“ffltejp{—z/ﬂj}

Bj T(ay)
The loss given default for debtor i is LGD; = (1 — A;)L;, 1 < i< n,
where )\; is the expected deterministic recovery rate and L; is the amount
of credit J.

The density function of Z; is given as f;(z) =

The goal: approximate the loss disribution by a discrete distribution and
derive the generator function for the latter.
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(v) Let gx(t) be the pgf of X. Then P(X = k) = kIgX (O) where

k X
g)(( )( ) & 5tk(t)'
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The pgf of the loss distribution

The loss will be approximated as an integer multiple of a prespecified loss
unit Lo (e.g. L, = 10° Euro):

LGD; = (1= AL ~ [ A28 Ly = viL with v; = [(525],

where [x] = argmin {|t — x|: t € Z,t — x € (—1/2,1/2]}.

The loss function is then given by L =", Xivilo = Y 11 Xivilo,
where X is the loss indicator and (Xi, ..., X,) has a PMD with factor
vector (21, 2>, ..., Zm) as described above.

Step 1 Determine the pgf of (the approximative) number of losses
N=X +...+X,
Xi|Z ~ Poi(\i(Z)), Vi = gxz(t) = exp{\i(Z)(t — 1)}, Vi =
gnz(t) = IT-; gxz(t) = [T exp{Ni(2)(t—1)} = exp{p(t—1)},
with p:= 3710 Mi(Z) = 307, (E\i > aijzj)-
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oo 5 .
5" F eelzmi(t — 1)} expl 2/} dz; = (55%)  with
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j=1

Step 2 Determine the pgf of the (approximated) loss distribution
L= 27:1 X,‘V,'Lo.

The conditional loss due to default of debtor i is L;|Z = v;(X;|Z)
L;|Z are independent for i =1,2,...,n =

gLz(t) = E(t5]Z) = E(t"]Z) = gx,z(t") = exp{\i(Z)(t" —1)}.
The pgf od the conditional overall loss is

81z(t) = 8L torrL,z(t) = 112y 8Lz (t) =

TT7s gxiz(7) =exp {7, 21 (S0 Niay(£ — 1) }.
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B m 1 _ 5] (&%
Thus we have gN(t)H(l—(Sjt> .

j=1

Step 2 Determine the pgf of the (approximated) loss distribution
L= 27:1 X,‘V,'Lo.
The conditional loss due to default of debtor i is L;|Z = v;(X;|Z)
L;|Z are independent for i =1,2,...,n =
gLz(t) = E(t5]Z) = E(t"]Z) = gx,z(t") = exp{\i(Z)(t" —1)}.
The pgf od the conditional overall loss is
gL\Z(t) = gL1+L2+...+Ln|Z(t) = H7:1 gLi|Z(t) =
Ty gi2(") =exp {7 Z (S0 Nay(t” — 1)) }.

Analogous computations as in the case of gN( ) yield'

m

1-6; ¥
g(t) = Jl;[l <1—(SJ/\J(t)> wobei A;(t) = Z/\ a;t"
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Example: Consider a credit portfolio with n = 100 credits, and m risk
factors, where m=1or m =5.
Assume that A\; = A =0.15for i =1,2,...,n,aj=a=1, 3 =8=1,
ajj=1/m i=12,...,nj=12...,m.
The probability that k creditors will default is given as follows for any
k € Nu{0}:

k
P(N = k) = Le\(0) = & Len,
For the computation of P(N = k), k =0,1,...,100, we can use the
following recursive formula

g,(\,k)(O) = ;:01 (kjl)g,(vk_l_/)(O) Py /!ajéﬁl, where k > 1.
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Let P be a credit portfolio consisting of m credits.

The loss function is L = 27;1 L; and the single credit losses L; are
independent conditioned on a vector Z of economical impact factors.
Goal: Determine VaR, (L) = q.(L), CVaR, = E(L|L > g.(L)),

CVaR; o = E(Li|L > qo (L)), for all i.

Application of Monte Carlo (MC) simulation has to deal with the
simulation of rare events!

E.g. for « = 0,99 only 1% of the standard MC simulations will lead to a
loss L, such that L > g, (L).

The standard MC estimator is:

_——(MC) .
CVaR, (L) = LD 1ooy(LD)
( ) Z;r‘,:l /( ,+oo L( ) Z (9o, + ) )

where L; is the value of the loss in the i-th simulation run.

———=(MC) . : :
CVaR, (L) is unstable, i.e. it has a very high variance unless the
number of simulation runs is very high.
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Let X be a r.v. in a probability space (Q, F, P) with absolutely
continuous distribution function and density function 7.

Goal: Determine § = E(h(X)) = [~ h(x)f(x)dx for some given
function h.

Examples:

Set h(x) = Ia(x) to compute the probability of an event A.

Set h(x) = x> c3(x) with ¢ = VaR(X) to compute CVaR(X).
Algorithm: Monte Carlo integration

(1) Simulate Xi,X3,..., X, independently with density .
(2) Compute the standard MC estimator M) = L3 h(X).

The strong low of large numbers implies lim HAE,MC) = 6 almost surely.
n—o0

In case of rare events, e.g. h(x) = la(x) with P(A) << 1, the
convergence is very slow.
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Importance sampling (contd.)
Let g be a probability density function, such that f(x) > 0 = g(x) > 0.

f(x)
We define the likelihood ratio as: r(x) := ¢ &) g(x) >0
0 g(x)=0

The following equality holds:
0= [ hr()g(x)x = Ey(hx)r()

Algorithm: Importance sampling
(1) Simulate Xi,X5,..., X, independently with density g.
(2) Compute the IS-estimator 65°) = L 37 h(X;)r(X;).

B
g is called importance sampling density (IS density).

Goal: choose an IS density g such that the variance of the IS estimator is
much smaller than the variance of the standard MC-estimator.

var (049)) = 2 (E(R(X)A(X) - )

var (éWC)) - %(Ef(hz(X)) — )

n
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Theoretically the variance of the IS estimator can be reduced to 0!
Assume h(x) > 0, Vx.

For g*(x) = f(x)h(x)/E(h(x)) we get : &) = h(X1)r(X1) = E(h(X)).
The IS estimator yields the correct value already after one single
simulation!

Let h(x) = I;x>c3(x) where ¢ >> E(X) (rare event).

We have E(h?(X)) = P(X > c) and

oo
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Goal: choose g such that E;(h*(X)r?(X)) becomes small, i.e. such that
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Let M,(t): R — R be the moment generating function of the r.v. X with
probability density f:

o0

Mi(t) = E(e) = / e (x)dx

— 00

Consider the IS density g:(x) := e,;;gx)). Then

r(x) = 2 = Mx(t)e .

Let i, := Eg(X) = E(Xe™™)/Mx(t).

How to determine a suitable t for a specific h(x)?

For example for the estimation of the tail probability P(X > ¢)?

Goal: choose t such that E(r(X); X > ¢) = E(Ijx>c; Mx(t)e™™)
becomes small.

e et forx >, t >0 = E(Ijxsc Mx(t)e™™) < Mx(t)e ™.
Set t(c) :== argmin{Mx(t)e~*: t > 0} where t(c) is the solution of
the equation u; = c.

(A unique solution of the above equality exists for all relevant values of c,
see e.g. Embrechts et al. for a proof).
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Exponential tilting in the case of probability measures:

Let X be a r.v. in (Q,F, P) such that Mx(t) = EP(exp{tX}) < oo, Vt.
Define a probability measure Q; in (2, F), such that

dQ./dP = exp(tX)/Mx(t), i.e. Qi(A) := EP (A;jff)} : A).

We have §& = Mx(t) exp(—tX) =: r(X).




IS in the case of probability measures
(useful for the estimation of the credit portfolio risk)

Let f and g be probability densities. Define probability measures P and
Q:
P(A) == [ caf(x)dx and Q(A) := [ _,&(x)dx for ACR.

Goal: Estimate the expected value 6 := E”(h(X)) of a given function
h: F — R in the probability space (2, F, P).

We have 0 := EP(h(X)) = EQ(h(X)r(X)) with r(x) := dP/dQ, thus r
is the density of P w.r.t. Q.

Exponential tilting in the case of probability measures:

Let X be a r.v. in (Q,F, P) such that Mx(t) = EP(exp{tX}) < oo, Vt.
Define a probability measure Q; in (2, F), such that

dQ./dP = exp(tX)/Mx(t), i.e. Qi(A) := EP (A;jff)} : A).

We have §& = Mx(t) exp(—tX) =: r(X).

The IS algorithm does not change: Simulate independent realisations of
X; in (2, F, Q) and set 0> = (1/n) Y7, Xire(X)).




