Approaches based on mixture models

Approaches based on mixture models

Assumptions:
(1) The default of each debtor depends on a number of (macro-economical) factors which are modelled stochastically.

Approaches based on mixture models

Assumptions:
(1) The default of each debtor depends on a number of (macro-economical) factors which are modelled stochastically.
(2) For a given realisation of these factors the defaults of different debtors are independent on each other.

Approaches based on mixture models

Assumptions:
(1) The default of each debtor depends on a number of (macro-economical) factors which are modelled stochastically.
(2) For a given realisation of these factors the defaults of different debtors are independent on each other.

Definition: The Bernoulli mixture distribution
The 0-1 random vector $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ has a Bernoulli mixture distribution ($B M D$) iff there exists a random vector $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)^{T}, m<n$, and the functions $f_{i}: \mathbb{R}^{m} \rightarrow[0,1]$, $i=1,2, \ldots, n$, such that X conditioned on Z has independent components with $X_{i} \mid Z \sim \operatorname{Bernoulli}\left(f_{i}(Z)\right)$.

Approaches based on mixture models

Assumptions:
(1) The default of each debtor depends on a number of (macro-economical) factors which are modelled stochastically.
(2) For a given realisation of these factors the defaults of different debtors are independent on each other.

Definition: The Bernoulli mixture distribution
The 0-1 random vector $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ has a Bernoulli mixture distribution ($B M D$) iff there exists a random vector
$Z=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)^{T}, m<n$, and the functions $f_{i}: \mathbb{R}^{m} \rightarrow[0,1]$,
$i=1,2, \ldots, n$, such that X conditioned on Z has independent components with $X_{i} \mid Z \sim \operatorname{Bernoulli}\left(f_{i}(Z)\right)$.

Then $\mathbb{P}(X=x \mid Z)=\prod_{i=1}^{n} f_{i}(Z)^{x_{i}}\left(1-f_{i}(Z)\right)^{1-x_{i}}$,
$\forall x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in\{0,1\}^{n}$

Approaches based on mixture models

Assumptions:
(1) The default of each debtor depends on a number of (macro-economical) factors which are modelled stochastically.
(2) For a given realisation of these factors the defaults of different debtors are independent on each other.

Definition: The Bernoulli mixture distribution
The 0-1 random vector $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ has a Bernoulli mixture distribution ($B M D$) iff there exists a random vector
$Z=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)^{T}, m<n$, and the functions $f_{i}: \mathbb{R}^{m} \rightarrow[0,1]$,
$i=1,2, \ldots, n$, such that X conditioned on Z has independent components with $X_{i} \mid Z \sim \operatorname{Bernoulli}\left(f_{i}(Z)\right)$.

Then $\mathbb{P}(X=x \mid Z)=\prod_{i=1}^{n} f_{i}(Z)^{x_{i}}\left(1-f_{i}(Z)\right)^{1-x_{i}}$,
$\forall x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in\{0,1\}^{n}$
The unconditional distribution:

$$
\mathbb{P}(X=x)=E(\mathbb{P}(X=x \mid Z))=E\left(\prod_{i=1}^{n} f_{i}(Z)^{x_{i}}\left(1-f_{i}(Z)\right)^{1-x_{i}}\right)
$$

Approaches based on mixture models

Assumptions:
(1) The default of each debtor depends on a number of (macro-economical) factors which are modelled stochastically.
(2) For a given realisation of these factors the defaults of different debtors are independent on each other.

Definition: The Bernoulli mixture distribution
The 0-1 random vector $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ has a Bernoulli mixture distribution ($B M D$) iff there exists a random vector
$Z=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)^{T}, m<n$, and the functions $f_{i}: \mathbb{R}^{m} \rightarrow[0,1]$,
$i=1,2, \ldots, n$, such that X conditioned on Z has independent components with $X_{i} \mid Z \sim \operatorname{Bernoulli}\left(f_{i}(Z)\right)$.

Then $\mathbb{P}(X=x \mid Z)=\prod_{i=1}^{n} f_{i}(Z)^{x_{i}}\left(1-f_{i}(Z)\right)^{1-x_{i}}$, $\forall x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in\{0,1\}^{n}$
The unconditional distribution:

$$
\mathbb{P}(X=x)=E(\mathbb{P}(X=x \mid Z))=E\left(\prod_{i=1}^{n} f_{i}(Z)^{x_{i}}\left(1-f_{i}(Z)\right)^{1-x_{i}}\right)
$$

If all function f_{i} coincide, i.e. $f_{i}=f, \forall i$, we get $N \mid Z \sim \operatorname{Bin}(n, f(Z))$ for the number $N=\sum_{i=1}^{n} X_{i}$ of defaults.

The Poisson mixture distribution

The Poisson mixture distribution

Definition: The discrete random vector $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ has a Poisson mixture distribution (PMD) iff there exists a random vector $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)^{T}, m<n$, and the functions $\lambda_{i}: \mathbb{R}^{m} \rightarrow(0, \infty)$, $i=1,2, \ldots, n$, such that X conditioned on Z has independent components with $X_{i} \mid Z \sim \operatorname{Poi}\left(\lambda_{i}(Z)\right)$.

The Poisson mixture distribution

Definition: The discrete random vector $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ has a Poisson mixture distribution (PMD) iff there exists a random vector $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)^{T}, m<n$, and the functions $\lambda_{i}: \mathbb{R}^{m} \rightarrow(0, \infty)$, $i=1,2, \ldots, n$, such that X conditioned on Z has independent components with $X_{i} \mid Z \sim \operatorname{Poi}\left(\lambda_{i}(Z)\right)$.
Then $\mathbb{P}(X=x \mid Z)=\prod_{i=1}^{n} \frac{\lambda_{i}(Z)^{x_{i}}}{x_{i}!} e^{-\lambda_{i}(Z)}$
$\forall x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in(\mathbb{N} \cup\{0\})^{n}$.

The Poisson mixture distribution

Definition: The discrete random vector $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ has a Poisson mixture distribution (PMD) iff there exists a random vector $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)^{T}, m<n$, and the functions $\lambda_{i}: \mathbb{R}^{m} \rightarrow(0, \infty)$, $i=1,2, \ldots, n$, such that X conditioned on Z has independent components with $X_{i} \mid Z \sim \operatorname{Poi}\left(\lambda_{i}(Z)\right)$.
Then $\mathbb{P}(X=x \mid Z)=\prod_{i=1}^{n} \frac{\lambda_{i}(Z)^{x_{i}}}{x_{i}!} e^{-\lambda_{i}(Z)}$
$\forall x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in(\mathbb{N} \cup\{0\})^{n}$.
The unconditional distribution:
$\mathbb{P}(X=x)=E(\mathbb{P}(X=x \mid Z))=E\left(\prod_{i=1}^{n} \frac{\lambda_{i}(Z)^{x_{i}}}{x_{i}!} e^{-\lambda_{i}(Z)}\right)$

The Poisson mixture distribution

Definition: The discrete random vector $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ has a Poisson mixture distribution (PMD) iff there exists a random vector $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)^{T}, m<n$, and the functions $\lambda_{i}: \mathbb{R}^{m} \rightarrow(0, \infty)$, $i=1,2, \ldots, n$, such that X conditioned on Z has independent components with $X_{i} \mid Z \sim \operatorname{Poi}\left(\lambda_{i}(Z)\right)$.
Then $\mathbb{P}(X=x \mid Z)=\prod_{i=1}^{n} \frac{\lambda_{i}(Z)^{x_{i}}}{x_{i}!} e^{-\lambda_{i}(Z)}$
$\forall x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in(\mathbb{N} \cup\{0\})^{n}$.
The unconditional distribution:
$\mathbb{P}(X=x)=E(\mathbb{P}(X=x \mid Z))=E\left(\prod_{i=1}^{n} \frac{\lambda_{i}(Z)^{x_{i}}}{x_{i}!} e^{-\lambda_{i}(Z)}\right)$
Let $\bar{X}_{i}:=\mathbb{I}_{[1, \infty)}\left(X_{i}\right)$.
Then $\bar{X}=\left(\bar{X}_{1}, \ldots, \bar{X}_{n}\right)$ is BMD with $f_{i}(Z)=1-e^{-\lambda_{i}(Z)}$

The Poisson mixture distribution

Definition: The discrete random vector $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$ has a Poisson mixture distribution (PMD) iff there exists a random vector $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)^{T}, m<n$, and the functions $\lambda_{i}: \mathbb{R}^{m} \rightarrow(0, \infty)$, $i=1,2, \ldots, n$, such that X conditioned on Z has independent components with $X_{i} \mid Z \sim \operatorname{Poi}\left(\lambda_{i}(Z)\right)$.
Then $\mathbb{P}(X=x \mid Z)=\prod_{i=1}^{n} \frac{\lambda_{i}(Z)^{x_{i}}}{x_{i}!} e^{-\lambda_{i}(Z)}$
$\forall x=\left(x_{1}, \ldots, x_{n}\right)^{T} \in(\mathbb{N} \cup\{0\})^{n}$.
The unconditional distribution:
$\mathbb{P}(X=x)=E(\mathbb{P}(X=x \mid Z))=E\left(\prod_{i=1}^{n} \frac{\lambda_{i}(Z)^{x_{i}}}{x_{i}!} e^{-\lambda_{i}(Z)}\right)$
Let $\bar{X}_{i}:=\mathbb{I}_{[1, \infty)}\left(X_{i}\right)$.
Then $\bar{X}=\left(\bar{X}_{1}, \ldots, \bar{X}_{n}\right)$ is BMD with $f_{i}(Z)=1-e^{-\lambda_{i}(Z)}$
If $\lambda_{i}(Z) \ll 1$ we get for the number $\tilde{N}=\sum_{i=1}^{n} \bar{X}_{i} \approx \sum_{i=1}^{n} X_{i}$ of defaults:

$$
\tilde{N} \mid Z \sim \operatorname{Poisson}(\bar{\lambda}(Z)), \text { where } \bar{\lambda}=\sum_{i=1}^{n} \lambda_{i}(Z)
$$

Examples of Bernoulli mixture distributions

Examples of Bernoulli mixture distributions

Assumptions:

- Z is univariate (i.e. there is only one risk factor)
- $f_{i}=f$, for all $i \in\{1,2, \ldots, n\}$

Examples of Bernoulli mixture distributions

Assumptions:

- Z is univariate (i.e. there is only one risk factor)
- $f_{i}=f$, for all $i \in\{1,2, \ldots, n\}$

We have $P\left(X_{i}=1 \mid Z\right)=f(Z), \forall i ; N \mid Z=\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}(n, f(Z))$.

Examples of Bernoulli mixture distributions

Assumptions:

- Z is univariate (i.e. there is only one risk factor)
- $f_{i}=f$, for all $i \in\{1,2, \ldots, n\}$

We have $P\left(X_{i}=1 \mid Z\right)=f(Z), \forall i ; N \mid Z=\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}(n, f(Z))$.
The unconditional probability of default of the first k debtors is $\mathbb{P}\left(X_{1}=1, \ldots, X_{k}=1, X_{k+1}=0, \ldots, X_{n}=0\right)=$ $E\left(\mathbb{P}\left(X_{1}=1, \ldots, X_{k}=1, X_{k+1}=0, \ldots, X_{n}=0 \mid Z\right)\right)=$ $E\left(f(Z)^{k}(1-f(Z))^{n-k}\right)$

Examples of Bernoulli mixture distributions

Assumptions:

- Z is univariate (i.e. there is only one risk factor)
- $f_{i}=f$, for all $i \in\{1,2, \ldots, n\}$

We have $P\left(X_{i}=1 \mid Z\right)=f(Z), \forall i ; N \mid Z=\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}(n, f(Z))$.
The unconditional probability of default of the first k debtors is $\mathbb{P}\left(X_{1}=1, \ldots, X_{k}=1, X_{k+1}=0, \ldots, X_{n}=0\right)=$ $E\left(\mathbb{P}\left(X_{1}=1, \ldots, X_{k}=1, X_{k+1}=0, \ldots, X_{n}=0 \mid Z\right)\right)=$ $E\left(f(Z)^{k}(1-f(Z))^{n-k}\right)$

Let G be the distribution function of Z. Then
$\mathbb{P}\left(X_{1}=1, \ldots, X_{k}=1, X_{k+1}=0, \ldots, X_{n}=0\right)=$ $\int_{-\infty}^{\infty} f(z)^{k}(1-f(z))^{n-k} d(G(z))$

Examples of Bernoulli mixture distributions

Assumptions:

- Z is univariate (i.e. there is only one risk factor)
- $f_{i}=f$, for all $i \in\{1,2, \ldots, n\}$

We have $P\left(X_{i}=1 \mid Z\right)=f(Z), \forall i ; N \mid Z=\sum_{i=1}^{n} X_{i} \sim \operatorname{Bin}(n, f(Z))$.
The unconditional probability of default of the first k debtors is
$\mathbb{P}\left(X_{1}=1, \ldots, X_{k}=1, X_{k+1}=0, \ldots, X_{n}=0\right)=$
$E\left(\mathbb{P}\left(X_{1}=1, \ldots, X_{k}=1, X_{k+1}=0, \ldots, X_{n}=0 \mid Z\right)\right)=$ $E\left(f(Z)^{k}(1-f(Z))^{n-k}\right)$
Let G be the distribution function of Z. Then
$\mathbb{P}\left(X_{1}=1, \ldots, X_{k}=1, X_{k+1}=0, \ldots, X_{n}=0\right)=$
$\int_{-\infty}^{\infty} f(z)^{k}(1-f(z))^{n-k} d(G(z))$
The distribution of the number N of defaults:

$$
\mathbb{P}(N=k)=\binom{n}{k} \int_{-\infty}^{\infty} f(z)^{k}(1-f(z))^{n-k} d(G(z))
$$

The beta-mixture distribution

The beta-mixture distribution
Let $Z \sim \operatorname{Beta}(a, b)$ and $f(z)=z$.

The beta-mixture distribution

Let $Z \sim \operatorname{Beta}(a, b)$ and $f(z)=z$.
The d.f. g of Z is given as $g(z)=\frac{1}{\beta(a, b)} z^{a-1}(1-z)^{b-1}$, for $a, b>0$, $z \in(0,1)$, where $\beta(a, b)=\int_{0}^{1} z^{a-1}(1-z)^{b-1} d z$ is the Euler beta function.

The beta-mixture distribution

Let $Z \sim \operatorname{Beta}(a, b)$ and $f(z)=z$.
The d.f. g of Z is given as $g(z)=\frac{1}{\beta(a, b)} z^{a-1}(1-z)^{b-1}$, for $a, b>0$, $z \in(0,1)$, where $\beta(a, b)=\int_{0}^{1} z^{a-1}(1-z)^{b-1} d z$ is the Euler beta function.
The distribution of the number of defaults:

$$
\begin{aligned}
\mathbb{P}(N=k) & =\binom{n}{k} \int_{0}^{1} z^{k}(1-z)^{n-k} g(z) d z=\binom{n}{k} \frac{1}{\beta(a, b)} \int_{0}^{1} z^{a+k-1}(1-z)^{n-k+b-1} d z \\
& =\binom{n}{k} \frac{\beta(a+k, b+n-k)}{\beta(a, b)} \quad \text { is the beta-binomial distribution }
\end{aligned}
$$

The beta-mixture distribution

Let $Z \sim \operatorname{Beta}(a, b)$ and $f(z)=z$.
The d.f. g of Z is given as $g(z)=\frac{1}{\beta(a, b)} z^{a-1}(1-z)^{b-1}$, for $a, b>0$,
$z \in(0,1)$, where $\beta(a, b)=\int_{0}^{1} z^{a-1}(1-z)^{b-1} d z$ is the Euler beta function.
The distribution of the number of defaults:

$$
\begin{aligned}
\mathbb{P}(N=k) & =\binom{n}{k} \int_{0}^{1} z^{k}(1-z)^{n-k} g(z) d z=\binom{n}{k} \frac{1}{\beta(a, b)} \int_{0}^{1} z^{a+k-1}(1-z)^{n-k+b-1} d z \\
& =\binom{n}{k} \frac{\beta(a+k, b+n-k)}{\beta(a, b)} \quad \text { is the beta-binomial distribution }
\end{aligned}
$$

The beta-mixture distribution

Let $Z \sim \operatorname{Beta}(a, b)$ and $f(z)=z$.
The d.f. g of Z is given as $g(z)=\frac{1}{\beta(a, b)} z^{a-1}(1-z)^{b-1}$, for $a, b>0$,
$z \in(0,1)$, where $\beta(a, b)=\int_{0}^{1} z^{a-1}(1-z)^{b-1} d z$ is the Euler beta function.
The distribution of the number of defaults:

$$
\begin{aligned}
\mathbb{P}(N=k) & =\binom{n}{k} \int_{0}^{1} z^{k}(1-z)^{n-k} g(z) d z=\binom{n}{k} \frac{1}{\beta(a, b)} \int_{0}^{1} z^{a+k-1}(1-z)^{n-k+b-1} d z \\
& =\binom{n}{k} \frac{\beta(a+k, b+n-k)}{\beta(a, b)} \quad \text { is the beta-binomial distribution }
\end{aligned}
$$

The probit-normal mixture

is obtained with $Z \sim N(0,1), f(z)=\phi(\mu+\sigma z), \mu \in \mathbb{R}, \sigma>0$, where ϕ is the standard normal distribution.

The beta-mixture distribution

Let $Z \sim \operatorname{Beta}(a, b)$ and $f(z)=z$.
The d.f. g of Z is given as $g(z)=\frac{1}{\beta(a, b)} z^{a-1}(1-z)^{b-1}$, for $a, b>0$,
$z \in(0,1)$, where $\beta(a, b)=\int_{0}^{1} z^{a-1}(1-z)^{b-1} d z$ is the Euler beta function.
The distribution of the number of defaults:

$$
\begin{aligned}
\mathbb{P}(N=k) & =\binom{n}{k} \int_{0}^{1} z^{k}(1-z)^{n-k} g(z) d z=\binom{n}{k} \frac{1}{\beta(a, b)} \int_{0}^{1} z^{a+k-1}(1-z)^{n-k+b-1} d z \\
& =\binom{n}{k} \frac{\beta(a+k, b+n-k)}{\beta(a, b)} \quad \text { is the beta-binomial distribution }
\end{aligned}
$$

The probit-normal mixture

is obtained with $Z \sim N(0,1), f(z)=\phi(\mu+\sigma z), \mu \in \mathbb{R}, \sigma>0$, where ϕ is the standard normal distribution.
The logit-normal mixture

The beta-mixture distribution

Let $Z \sim \operatorname{Beta}(a, b)$ and $f(z)=z$.
The d.f. g of Z is given as $g(z)=\frac{1}{\beta(a, b)} z^{a-1}(1-z)^{b-1}$, for $a, b>0$,
$z \in(0,1)$, where $\beta(a, b)=\int_{0}^{1} z^{a-1}(1-z)^{b-1} d z$ is the Euler beta function.
The distribution of the number of defaults:

$$
\begin{aligned}
\mathbb{P}(N=k) & =\binom{n}{k} \int_{0}^{1} z^{k}(1-z)^{n-k} g(z) d z=\binom{n}{k} \frac{1}{\beta(a, b)} \int_{0}^{1} z^{a+k-1}(1-z)^{n-k+b-1} d z \\
& =\binom{n}{k} \frac{\beta(a+k, b+n-k)}{\beta(a, b)} \quad \text { is the beta-binomial distribution }
\end{aligned}
$$

The probit-normal mixture

is obtained with $Z \sim N(0,1), f(z)=\phi(\mu+\sigma z), \mu \in \mathbb{R}, \sigma>0$, where ϕ is the standard normal distribution.

The logit-normal mixture

is with $Z \sim N(0,1), f(z)=(1+\exp \{\mu+\sigma z\})^{-1}, \mu \in \mathbb{R}, \sigma>0$.

CreditRisk ${ }^{+}$- a Poisson mixture model

CreditRisk ${ }^{+}$- a Poisson mixture model

(developed by CSFB in 1997, see Crouhy et al. (2000) and
www.credit_suisse.com/investment_banking/research/en/credit_risk.jsp

CreditRisk ${ }^{+}$- a Poisson mixture model

(developed by CSFB in 1997, see Crouhy et al. (2000) and
www.credit_suisse.com/investment_banking/research/en/credit_risk.jsp
Consider m independent risik factors $Z_{1}, Z_{2}, \ldots, Z_{m}, Z_{j} \sim \Gamma\left(\alpha_{j}, \beta_{j}\right)$, $j=1,2, \ldots, m$, with parameter α_{j}, β_{j} generally choosen such that such that $E\left(Z_{j}\right)=1$.

CreditRisk ${ }^{+}$- a Poisson mixture model

(developed by CSFB in 1997, see Crouhy et al. (2000) and
www.credit_suisse.com/investment_banking/research/en/credit_risk.jsp
Consider m independent risik factors $Z_{1}, Z_{2}, \ldots, Z_{m}, Z_{j} \sim \Gamma\left(\alpha_{j}, \beta_{j}\right)$, $j=1,2, \ldots, m$, with parameter α_{j}, β_{j} generally choosen such that such that $E\left(Z_{j}\right)=1$.
Let $\lambda_{i}(Z)=\bar{\lambda}_{i} \sum_{j=1}^{m} a_{i j} Z_{j}, \sum_{j=1}^{m} a_{i j}=1$ for $i=1,2, \ldots, n$ for some parameters $\bar{\lambda}_{i}>0$.

CreditRisk ${ }^{+}$- a Poisson mixture model

(developed by CSFB in 1997, see Crouhy et al. (2000) and
www.credit_suisse.com/investment_banking/research/en/credit_risk.jsp
Consider m independent risik factors $Z_{1}, Z_{2}, \ldots, Z_{m}, Z_{j} \sim \Gamma\left(\alpha_{j}, \beta_{j}\right)$, $j=1,2, \ldots, m$, with parameter α_{j}, β_{j} generally choosen such that such that $E\left(Z_{j}\right)=1$.
Let $\lambda_{i}(Z)=\bar{\lambda}_{i} \sum_{j=1}^{m} a_{i j} Z_{j}, \sum_{j=1}^{m} a_{i j}=1$ for $i=1,2, \ldots, n$ for some parameters $\bar{\lambda}_{i}>0$. Then $\left.E\left(\lambda_{i}(Z)\right)=\bar{\lambda}_{i}>0\right)$ holds.

CreditRisk ${ }^{+}$- a Poisson mixture model

(developed by CSFB in 1997, see Crouhy et al. (2000) and
www.credit_suisse.com/investment_banking/research/en/credit_risk.jsp
Consider m independent risik factors $Z_{1}, Z_{2}, \ldots, Z_{m}, Z_{j} \sim \Gamma\left(\alpha_{j}, \beta_{j}\right)$, $j=1,2, \ldots, m$, with parameter α_{j}, β_{j} generally choosen such that such that $E\left(Z_{j}\right)=1$.
Let $\lambda_{i}(Z)=\bar{\lambda}_{i} \sum_{j=1}^{m} a_{i j} Z_{j}, \sum_{j=1}^{m} a_{i j}=1$ for $i=1,2, \ldots, n$ for some parameters $\bar{\lambda}_{i}>0$. Then $\left.E\left(\lambda_{i}(Z)\right)=\bar{\lambda}_{i}>0\right)$ holds.
The density function of Z_{j} is given as $f_{j}(z)=\frac{z^{\alpha_{j}-1} \exp \left\{-z / \beta_{j}\right\}}{\beta_{j}^{\alpha_{j}} \Gamma\left(\alpha_{j}\right)}$

CreditRisk ${ }^{+}$- a Poisson mixture model

(developed by CSFB in 1997, see Crouhy et al. (2000) and
www.credit_suisse.com/investment_banking/research/en/credit_risk.jsp
Consider m independent risik factors $Z_{1}, Z_{2}, \ldots, Z_{m}, Z_{j} \sim \Gamma\left(\alpha_{j}, \beta_{j}\right)$, $j=1,2, \ldots, m$, with parameter α_{j}, β_{j} generally choosen such that such that $E\left(Z_{j}\right)=1$.
Let $\lambda_{i}(Z)=\bar{\lambda}_{i} \sum_{j=1}^{m} a_{i j} Z_{j}, \sum_{j=1}^{m} a_{i j}=1$ for $i=1,2, \ldots, n$ for some parameters $\bar{\lambda}_{i}>0$. Then $\left.E\left(\lambda_{i}(Z)\right)=\bar{\lambda}_{i}>0\right)$ holds.
The density function of Z_{j} is given as $f_{j}(z)=\frac{z^{\alpha_{j}-1} \exp \left\{-z / \beta_{j}\right\}}{\beta_{j}^{\alpha_{j}} \Gamma\left(\alpha_{j}\right)}$
The loss given default for debtor i is $L G D_{i}=\left(1-\lambda_{i}\right) L_{i}, 1 \leq i \leq n$, where λ_{i} is the expected deterministic recovery rate and L_{i} is the amount of credit i.

CreditRisk ${ }^{+}$- a Poisson mixture model

(developed by CSFB in 1997, see Crouhy et al. (2000) and
www.credit_suisse.com/investment_banking/research/en/credit_risk.jsp
Consider m independent risik factors $Z_{1}, Z_{2}, \ldots, Z_{m}, Z_{j} \sim \Gamma\left(\alpha_{j}, \beta_{j}\right)$, $j=1,2, \ldots, m$, with parameter α_{j}, β_{j} generally choosen such that such that $E\left(Z_{j}\right)=1$.
Let $\lambda_{i}(Z)=\bar{\lambda}_{i} \sum_{j=1}^{m} a_{i j} Z_{j}, \sum_{j=1}^{m} a_{i j}=1$ for $i=1,2, \ldots, n$ for some parameters $\bar{\lambda}_{i}>0$. Then $\left.E\left(\lambda_{i}(Z)\right)=\bar{\lambda}_{i}>0\right)$ holds.
The density function of Z_{j} is given as $f_{j}(z)=\frac{z^{\alpha_{j}-1} \exp \left\{-z / \beta_{j}\right\}}{\beta_{j}^{\alpha_{j}} \Gamma\left(\alpha_{j}\right)}$
The loss given default for debtor i is $L G D_{i}=\left(1-\lambda_{i}\right) L_{i}, 1 \leq i \leq n$, where λ_{i} is the expected deterministic recovery rate and L_{i} is the amount of credit i.
The goal: approximate the loss disribution by a discrete distribution and derive the generator function for the latter.

The probability generating function and its properties

The probability generating function and its properties

Let Y be a discrete r.v. taking values on $\left\{y_{1}, \ldots, y_{m}\right\}$ (a continuous r.v. with density function $f(y)$ in \mathbb{R}). The probability generating function (pgf) g_{Y} of Y is a mapping of $[0,1]$ to the reals defined as

The probability generating function and its properties

Let Y be a discrete r.v. taking values on $\left\{y_{1}, \ldots, y_{m}\right\}$ (a continuous r.v. with density function $f(y)$ in \mathbb{R}). The probability generating function (pgf) g_{Y} of Y is a mapping of $[0,1]$ to the reals defined as $g_{Y}(t):=E\left(t^{Y}\right)=\sum_{i=1}^{m} t^{y_{i}} P\left(Y=y_{i}\right)\left(g_{Y}(t):=\int_{-\infty}^{\infty} t^{y} f(y) d y\right)$.

The probability generating function and its properties

Let Y be a discrete r.v. taking values on $\left\{y_{1}, \ldots, y_{m}\right\}$ (a continuous r.v. with density function $f(y)$ in \mathbb{R}). The probability generating function (pgf) g_{Y} of Y is a mapping of $[0,1]$ to the reals defined as $g_{Y}(t):=E\left(t^{Y}\right)=\sum_{i=1}^{m} t^{y_{i}} P\left(Y=y_{i}\right)\left(g_{Y}(t):=\int_{-\infty}^{\infty} t^{y} f(y) d y\right)$.

Some properties of probability generating functions:

The probability generating function and its properties

Let Y be a discrete r.v. taking values on $\left\{y_{1}, \ldots, y_{m}\right\}$ (a continuous r.v. with density function $f(y)$ in \mathbb{R}). The probability generating function (pgf) g_{Y} of Y is a mapping of $[0,1]$ to the reals defined as $g_{Y}(t):=E\left(t^{Y}\right)=\sum_{i=1}^{m} t^{y_{i}} P\left(Y=y_{i}\right)\left(g_{Y}(t):=\int_{-\infty}^{\infty} t^{y} f(y) d y\right)$.

Some properties of probability generating functions:
(i) If $Y \sim \operatorname{Bernoulli}(p)$, then $g_{Y}(t)=1+p(t-1)$.

The probability generating function and its properties

Let Y be a discrete r.v. taking values on $\left\{y_{1}, \ldots, y_{m}\right\}$ (a continuous r.v. with density function $f(y)$ in \mathbb{R}). The probability generating function (pgf) g_{Y} of Y is a mapping of $[0,1]$ to the reals defined as $g_{Y}(t):=E\left(t^{Y}\right)=\sum_{i=1}^{m} t^{y_{i}} P\left(Y=y_{i}\right)\left(g_{Y}(t):=\int_{-\infty}^{\infty} t^{y} f(y) d y\right)$.

Some properties of probability generating functions:
(i) If $Y \sim \operatorname{Bernoulli}(p)$, then $g_{Y}(t)=1+p(t-1)$.
(ii) If $Y \sim \operatorname{Poisson}(\lambda)$, then $g_{Y}(t)=\exp \{\lambda(t-1)\}$.

The probability generating function and its properties

Let Y be a discrete r.v. taking values on $\left\{y_{1}, \ldots, y_{m}\right\}$ (a continuous r.v. with density function $f(y)$ in \mathbb{R}). The probability generating function (pgf) g_{Y} of Y is a mapping of $[0,1]$ to the reals defined as $g_{Y}(t):=E\left(t^{Y}\right)=\sum_{i=1}^{m} t^{y_{i}} P\left(Y=y_{i}\right)\left(g_{Y}(t):=\int_{-\infty}^{\infty} t^{y} f(y) d y\right)$.

Some properties of probability generating functions:
(i) If $Y \sim \operatorname{Bernoulli}(p)$, then $g_{Y}(t)=1+p(t-1)$.
(ii) If $Y \sim \operatorname{Poisson}(\lambda)$, then $g_{Y}(t)=\exp \{\lambda(t-1)\}$.
(iii) If the r.v. X_{1}, \ldots, X_{n} are independent, then

$$
g x_{1}+\ldots+X_{n}(t)=\prod_{i=1}^{n} g x_{i}(t) .
$$

The probability generating function and its properties

Let Y be a discrete r.v. taking values on $\left\{y_{1}, \ldots, y_{m}\right\}$ (a continuous r.v. with density function $f(y)$ in $\mathbb{R})$. The probability generating function (pgf) g_{Y} of Y is a mapping of $[0,1]$ to the reals defined as $g_{Y}(t):=E\left(t^{Y}\right)=\sum_{i=1}^{m} t^{y_{i}} P\left(Y=y_{i}\right)\left(g_{Y}(t):=\int_{-\infty}^{\infty} t^{y} f(y) d y\right)$.

Some properties of probability generating functions:
(i) If $Y \sim \operatorname{Bernoulli}(p)$, then $g_{Y}(t)=1+p(t-1)$.
(ii) If $Y \sim \operatorname{Poisson}(\lambda)$, then $g_{Y}(t)=\exp \{\lambda(t-1)\}$.
(iii) If the r.v. X_{1}, \ldots, X_{n} are independent, then $g_{X_{1}+\ldots+X_{n}}(t)=\prod_{i=1}^{n} g_{X_{i}}(t)$.
(iv) Let Y be a r.v. with density function f and let $g_{X \mid Y=y}(t)$ be the pgf of $X \mid Y=y$. Then $g_{X}(t)=\int_{-\infty}^{\infty} g_{X \mid Y=y}(t) f(y) d y$.

The probability generating function and its properties

Let Y be a discrete r.v. taking values on $\left\{y_{1}, \ldots, y_{m}\right\}$ (a continuous r.v. with density function $f(y)$ in $\mathbb{R})$. The probability generating function (pgf) g_{Y} of Y is a mapping of $[0,1]$ to the reals defined as $g_{Y}(t):=E\left(t^{Y}\right)=\sum_{i=1}^{m} t^{y_{i}} P\left(Y=y_{i}\right)\left(g_{Y}(t):=\int_{-\infty}^{\infty} t^{y} f(y) d y\right)$.

Some properties of probability generating functions:
(i) If $Y \sim \operatorname{Bernoulli}(p)$, then $g_{Y}(t)=1+p(t-1)$.
(ii) If $Y \sim \operatorname{Poisson}(\lambda)$, then $g_{Y}(t)=\exp \{\lambda(t-1)\}$.
(iii) If the r.v. X_{1}, \ldots, X_{n} are independent, then $g_{X_{1}+\ldots+X_{n}}(t)=\prod_{i=1}^{n} g_{X_{i}}(t)$.
(iv) Let Y be a r.v. with density function f and let $g_{X \mid Y=y}(t)$ be the pgf of $X \mid Y=y$. Then $g_{X}(t)=\int_{-\infty}^{\infty} g_{X \mid Y=y}(t) f(y) d y$.
(v) Let $g_{X}(t)$ be the pgf of X. Then $\mathbb{P}(X=k)=\frac{1}{k!} g_{X}^{(k)}(0)$, where $g_{X}^{(k)}(t)=\frac{d^{k} g_{x}(t)}{d t^{k}}$.

The pgf of the loss distribution

The pgf of the loss distribution

The loss will be approximated as an integer multiple of a prespecified loss unit L_{0} (e.g. $L_{o}=10^{6}$ Euro):

The pgf of the loss distribution

The loss will be approximated as an integer multiple of a prespecified loss unit L_{0} (e.g. $L_{o}=10^{6}$ Euro):
$L G D_{i}=\left(1-\lambda_{i}\right) L_{i} \approx\left[\frac{\left(1-\lambda_{i}\right) L_{i}}{L_{0}}\right] L_{0}=v_{i} L_{0}$ with $v_{i}:=\left[\frac{\left(1-\lambda_{i}\right) L_{i}}{L_{0}}\right]$,
where $[x]=\arg \min _{t}\{|t-x|: t \in \mathbb{Z}, t-x \in(-1 / 2,1 / 2]\}$.

The pgf of the loss distribution

The loss will be approximated as an integer multiple of a prespecified loss unit L_{0} (e.g. $L_{o}=10^{6}$ Euro):
$L G D_{i}=\left(1-\lambda_{i}\right) L_{i} \approx\left[\frac{\left(1-\lambda_{i}\right) L_{i}}{L_{0}}\right] L_{0}=v_{i} L_{0}$ with $v_{i}:=\left[\frac{\left(1-\lambda_{i}\right) L_{i}}{L_{0}}\right]$,
where $[x]=\arg \min _{t}\{|t-x|: t \in \mathbb{Z}, t-x \in(-1 / 2,1 / 2]\}$.
The loss function is then given by $L=\sum_{i=1}^{n} \bar{X}_{i} v_{i} L_{0} \approx \sum_{i=1}^{n} X_{i} v_{i} L_{0}$, where \bar{X}_{i} is the loss indicator and $\left(X_{1}, \ldots, X_{n}\right)$ has a PMD with factor vector $\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ as described above.

The pgf of the loss distribution

The loss will be approximated as an integer multiple of a prespecified loss unit L_{0} (e.g. $L_{o}=10^{6}$ Euro):
$L G D_{i}=\left(1-\lambda_{i}\right) L_{i} \approx\left[\frac{\left(1-\lambda_{i}\right) L_{i}}{L_{0}}\right] L_{0}=v_{i} L_{0}$ with $v_{i}:=\left[\frac{\left(1-\lambda_{i}\right) L_{i}}{L_{0}}\right]$,
where $[x]=\arg \min _{t}\{|t-x|: t \in \mathbb{Z}, t-x \in(-1 / 2,1 / 2]\}$.
The loss function is then given by $L=\sum_{i=1}^{n} \bar{X}_{i} v_{i} L_{0} \approx \sum_{i=1}^{n} X_{i} v_{i} L_{0}$, where \bar{X}_{i} is the loss indicator and $\left(X_{1}, \ldots, X_{n}\right)$ has a PMD with factor vector $\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ as described above.

Step 1 Determine the pgf of (the approximative) number of losses

$$
N=X_{1}+\ldots+X_{n}
$$

The pgf of the loss distribution

The loss will be approximated as an integer multiple of a prespecified loss unit L_{0} (e.g. $L_{o}=10^{6}$ Euro):
$L G D_{i}=\left(1-\lambda_{i}\right) L_{i} \approx\left[\frac{\left(1-\lambda_{i}\right) L_{i}}{L_{0}}\right] L_{0}=v_{i} L_{0}$ with $v_{i}:=\left[\frac{\left(1-\lambda_{i}\right) L_{i}}{L_{0}}\right]$,
where $[x]=\arg \min _{t}\{|t-x|: t \in \mathbb{Z}, t-x \in(-1 / 2,1 / 2]\}$.
The loss function is then given by $L=\sum_{i=1}^{n} \bar{X}_{i} v_{i} L_{0} \approx \sum_{i=1}^{n} X_{i} v_{i} L_{0}$, where \bar{X}_{i} is the loss indicator and $\left(X_{1}, \ldots, X_{n}\right)$ has a PMD with factor vector $\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ as described above.

Step 1 Determine the pgf of (the approximative) number of losses

$$
\begin{aligned}
& N=X_{1}+\ldots+X_{n} \\
& X_{i} \mid Z \sim \operatorname{Poi}\left(\lambda_{i}(Z)\right), \forall i \Longrightarrow g_{X_{i} \mid Z}(t)=\exp \left\{\lambda_{i}(Z)(t-1)\right\}, \forall i \Longrightarrow \\
& g_{N \mid Z}(t)=\prod_{i=1}^{n} g_{X_{i} \mid Z}(t)=\prod_{i=1}^{n} \exp \left\{\lambda_{i}(Z)(t-1)\right\}=\exp \{\mu(t-1)\}, \\
& \text { with } \mu:=\sum_{i=1}^{n} \lambda_{i}(Z)=\sum_{i=1}^{n}\left(\bar{\lambda}_{i} \sum_{j=1}^{m} a_{i j} Z_{j}\right) .
\end{aligned}
$$

The pgf of the loss distribution (contd.)

The pgf of the loss distribution (contd.)

Then
$g_{N}(t)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} g_{N \mid Z=\left(z_{1}, z_{2}, \ldots, z_{m}\right)} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}=$

The pgf of the loss distribution (contd.)

Then
$g_{N}(t)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} g_{N \mid Z=\left(z_{1}, z_{2}, \ldots, z_{m}\right)} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}=$ $\int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \left\{\sum_{i=1}^{n}\left(\bar{\lambda}_{i} \sum_{j=1}^{m} a_{i j} z_{j}\right)(t-1)\right\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}=$

The pgf of the loss distribution (contd.)

Then
$g_{N}(t)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} g_{N \mid Z=\left(z_{1}, z_{2}, \ldots, z_{m}\right)} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}=$
$\int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \left\{\sum_{i=1}^{n}\left(\bar{\lambda}_{i} \sum_{j=1}^{m} a_{i j} z_{j}\right)(t-1)\right\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}=$
$\int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \{(t-1) \sum_{j=1}^{m}(\underbrace{\sum_{i=1}^{n} \bar{\lambda}_{i} a_{i j}}_{\mu_{j}}) z_{j})\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}=$

The pgf of the loss distribution (contd.)

Then

$$
\begin{aligned}
& g_{N}(t)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} g_{N \mid z=\left(z_{1}, z_{2}, \ldots, z_{m}\right)} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \left\{\sum_{i=1}^{n}\left(\bar{\lambda}_{i} \sum_{j=1}^{m} a_{i j} z_{j}\right)(t-1)\right\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \{(t-1) \sum_{j=1}^{m}(\underbrace{\sum_{i=1}^{n} \bar{\lambda}_{i} a_{i j}}_{\mu_{j}}) z_{j})\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \left\{(t-1) \mu_{1} z_{1}\right\} f_{1}\left(z_{1}\right) d z_{1} \ldots \exp \left\{(t-1) \mu_{m} z_{m}\right\} f_{m}\left(z_{m}\right) d z_{m}= \\
& \prod_{j=1}^{m} \int_{0}^{\infty} \exp \left\{z_{j} \mu_{j}(t-1)\right\} \frac{1}{\beta_{j}^{\alpha_{j}} \Gamma\left(\alpha_{j}\right)} z_{j}^{\alpha_{j}-1} \exp \left\{-z_{j} / \beta_{j}\right\} d z_{j}
\end{aligned}
$$

The pgf of the loss distribution (contd.)

Then

$$
\begin{aligned}
& g_{N}(t)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} g_{N \mid z=\left(z_{1}, z_{2}, \ldots, z_{m}\right)} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \left\{\sum_{i=1}^{n}\left(\bar{\lambda}_{i} \sum_{j=1}^{m} a_{i j} z_{j}\right)(t-1)\right\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \{(t-1) \sum_{j=1}^{m}(\underbrace{\sum_{i=1}^{n} \bar{\lambda}_{i} a_{i j}}_{\mu_{j}}) z_{j})\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \left\{(t-1) \mu_{1} z_{1}\right\} f_{1}\left(z_{1}\right) d z_{1} \ldots \exp \left\{(t-1) \mu_{m} z_{m}\right\} f_{m}\left(z_{m}\right) d z_{m}= \\
& \prod_{j=1}^{m} \int_{0}^{\infty} \exp \left\{z_{j} \mu_{j}(t-1)\right\} \frac{1}{\beta_{j}^{\alpha_{j}} \Gamma\left(\alpha_{j}\right)} z_{j}^{\alpha_{j}-1} \exp \left\{-z_{j} / \beta_{j}\right\} d z_{j}
\end{aligned}
$$

The computation of each integral in the product above yields

The pgf of the loss distribution (contd.)

Then

$$
\begin{aligned}
& g_{N}(t)=\int_{0}^{\infty} \ldots \int_{0}^{\infty} g_{N \mid Z=\left(z_{1}, z_{2}, \ldots, z_{m}\right)} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \left\{\sum_{i=1}^{n}\left(\bar{\lambda}_{i} \sum_{j=1}^{m} a_{i j} z_{j}\right)(t-1)\right\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \{(t-1) \sum_{j=1}^{m}(\underbrace{\sum_{i=1}^{n} \bar{\lambda}_{i} a_{i j}}_{\mu_{j}}) z_{j})\} f_{1}\left(z_{1}\right) \ldots f_{m}\left(z_{m}\right) d z_{1} \ldots d z_{m}= \\
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} \exp \left\{(t-1) \mu_{1} z_{1}\right\} f_{1}\left(z_{1}\right) d z_{1} \ldots \exp \left\{(t-1) \mu_{m} z_{m}\right\} f_{m}\left(z_{m}\right) d z_{m}= \\
& \prod_{j=1}^{m} \int_{0}^{\infty} \exp \left\{z_{j} \mu_{j}(t-1)\right\} \frac{1}{\beta_{j}^{\alpha_{j}} \Gamma\left(\alpha_{j}\right)} z_{j}^{\alpha_{j}-1} \exp \left\{-z_{j} / \beta_{j}\right\} d z_{j}
\end{aligned}
$$

The computation of each integral in the product above yields

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{1}{\Gamma\left(\alpha_{j}\right) \beta_{j}^{\alpha_{j}}} \exp \left\{z_{j} \mu_{j}(t-1)\right\} z_{j}^{\alpha_{j}-1} \exp \left\{-z_{j} / \beta_{j}\right\} d z_{j}=\left(\frac{1-\delta_{j}}{1-\delta_{j} t}\right)^{\alpha_{j}} \text { with } \\
& \delta_{j}=\beta_{j} \mu_{j} /\left(1+\beta_{j} \mu_{j}\right) .
\end{aligned}
$$

The pgf of the loss distribution (contd.)

The pgf of the loss distribution (contd.)
Thus we have $g_{N}(t)=\prod_{j=1}^{m}\left(\frac{1-\delta_{j}}{1-\delta_{j} t}\right)^{\alpha_{j}}$.

The pgf of the loss distribution (contd.)
Thus we have $g_{N}(t)=\prod_{j=1}^{m}\left(\frac{1-\delta_{j}}{1-\delta_{j} t}\right)^{\alpha_{j}}$.
Step 2 Determine the pgf of the (approximated) loss distribution $L=\sum_{i=1}^{n} X_{i} v_{i} L_{0}$.

The pgf of the loss distribution (contd.)

Thus we have $g_{N}(t)=\prod_{j=1}^{m}\left(\frac{1-\delta_{j}}{1-\delta_{j} t}\right)^{\alpha_{j}}$.
Step 2 Determine the pgf of the (approximated) loss distribution $L=\sum_{i=1}^{n} X_{i} v_{i} L_{0}$.

The conditional loss due to default of debtor i is $L_{i} \mid Z=v_{i}\left(X_{i} \mid Z\right)$

The pgf of the loss distribution (contd.)

Thus we have $g_{N}(t)=\prod_{j=1}^{m}\left(\frac{1-\delta_{j}}{1-\delta_{j} t}\right)^{\alpha_{j}}$.
Step 2 Determine the pgf of the (approximated) loss distribution $L=\sum_{i=1}^{n} X_{i} v_{i} L_{0}$.
The conditional loss due to default of debtor i is $L_{i} \mid Z=v_{i}\left(X_{i} \mid Z\right)$
$L_{i} \mid Z$ are independent for $i=1,2, \ldots, n \Longrightarrow$

$$
g_{L_{i} \mid Z}(t)=E\left(t^{L_{i}} \mid Z\right)=E\left(t^{v_{i} x_{i}} \mid Z\right)=g_{X_{i} \mid Z}\left(t^{v_{i}}\right)=\exp \left\{\lambda_{i}(Z)\left(t^{v_{i}}-1\right)\right\} .
$$

The pgf of the loss distribution (contd.)

Thus we have $g_{N}(t)=\prod_{j=1}^{m}\left(\frac{1-\delta_{j}}{1-\delta_{j} t}\right)^{\alpha_{j}}$.
Step 2 Determine the pgf of the (approximated) loss distribution $L=\sum_{i=1}^{n} X_{i} v_{i} L_{0}$.
The conditional loss due to default of debtor i is $L_{i} \mid Z=v_{i}\left(X_{i} \mid Z\right)$
$L_{i} \mid Z$ are independent for $i=1,2, \ldots, n \Longrightarrow$
$g_{L_{i} \mid Z}(t)=E\left(t^{L_{i}} \mid Z\right)=E\left(t^{v_{i} X_{i}} \mid Z\right)=g_{X_{i} \mid Z}\left(t^{v_{i}}\right)=\exp \left\{\lambda_{i}(Z)\left(t^{v_{i}}-1\right)\right\}$.
The pgf od the conditional overall loss is

$$
\begin{aligned}
& g_{L \mid Z}(t)=g_{L_{1}+L_{2}+\ldots+L_{n} \mid Z}(t)=\prod_{i=1}^{n} g_{L_{i} \mid Z}(t)= \\
& \prod_{i=1}^{n} g_{X_{i} \mid Z}\left(t^{v_{i}}\right)=\exp \left\{\sum_{j=1}^{m} Z_{j}\left(\sum_{i=1}^{n} \bar{\lambda}_{i} a_{i j}\left(t^{v_{i}}-1\right)\right)\right\} .
\end{aligned}
$$

The pgf of the loss distribution (contd.)

Thus we have $g_{N}(t)=\prod_{j=1}^{m}\left(\frac{1-\delta_{j}}{1-\delta_{j} t}\right)^{\alpha_{j}}$.
Step 2 Determine the pgf of the (approximated) loss distribution $L=\sum_{i=1}^{n} X_{i} v_{i} L_{0}$.
The conditional loss due to default of debtor i is $L_{i} \mid Z=v_{i}\left(X_{i} \mid Z\right)$
$L_{i} \mid Z$ are independent for $i=1,2, \ldots, n \Longrightarrow$
$g_{L_{i} \mid Z}(t)=E\left(t^{L_{i}} \mid Z\right)=E\left(t^{v_{i} X_{i}} \mid Z\right)=g_{X_{i} \mid Z}\left(t^{v_{i}}\right)=\exp \left\{\lambda_{i}(Z)\left(t^{v_{i}}-1\right)\right\}$.
The pgf od the conditional overall loss is
$g_{L \mid Z}(t)=g_{L_{1}+L_{2}+\ldots+L_{n} \mid Z}(t)=\prod_{i=1}^{n} g_{L_{i} \mid Z}(t)=$
$\prod_{i=1}^{n} g_{X_{i} \mid Z}\left(t^{v_{i}}\right)=\exp \left\{\sum_{j=1}^{m} z_{j}\left(\sum_{i=1}^{n} \bar{\lambda}_{i} a_{i j}\left(t^{v_{i}}-1\right)\right)\right\}$.
Analogous computations as in the case of $g_{N}(t)$ yield:

$$
g_{L}(t)=\prod_{j=1}^{m}\left(\frac{1-\delta_{j}}{1-\delta_{j} \Lambda_{j}(t)}\right)^{\alpha_{j}} \text { wobei } \Lambda_{j}(t)=\frac{1}{\mu_{j}} \sum_{i=1}^{n} \bar{\lambda}_{i} a_{i j} t^{v_{i}} .
$$

The pgf of the loss distribution (contd.)

The pgf of the loss distribution (contd.)
Example: Consider a credit portfolio with $n=100$ credits, and m risk factors, where $m=1$ or $m=5$.

The pgf of the loss distribution (contd.)

Example: Consider a credit portfolio with $n=100$ credits, and m risk factors, where $m=1$ or $m=5$.
Assume that $\bar{\lambda}_{i}=\bar{\lambda}=0.15$, for $i=1,2, \ldots, n, \alpha_{j}=\alpha=1, \beta_{j}=\beta=1$, $a_{i, j}=1 / m, i=1,2, \ldots, n, j=1,2, \ldots, m$.

The pgf of the loss distribution (contd.)

Example: Consider a credit portfolio with $n=100$ credits, and m risk factors, where $m=1$ or $m=5$.
Assume that $\bar{\lambda}_{i}=\bar{\lambda}=0.15$, for $i=1,2, \ldots, n, \alpha_{j}=\alpha=1, \beta_{j}=\beta=1$, $a_{i, j}=1 / m, i=1,2, \ldots, n, j=1,2, \ldots, m$.
The probability that k creditors will default is given as follows for any $k \in \mathbb{N} \cup\{0\}$:

The pgf of the loss distribution (contd.)

Example: Consider a credit portfolio with $n=100$ credits, and m risk factors, where $m=1$ or $m=5$.
Assume that $\bar{\lambda}_{i}=\bar{\lambda}=0.15$, for $i=1,2, \ldots, n, \alpha_{j}=\alpha=1, \beta_{j}=\beta=1$, $a_{i, j}=1 / m, i=1,2, \ldots, n, j=1,2, \ldots, m$.
The probability that k creditors will default is given as follows for any $k \in \mathbb{N} \cup\{0\}$:
$\mathbb{P}(N=k)=\frac{1}{k!} g_{N}^{(k)}(0)=\frac{1}{k!} \frac{d^{k} g_{N}}{d t^{k}}$.

The pgf of the loss distribution (contd.)

Example: Consider a credit portfolio with $n=100$ credits, and m risk factors, where $m=1$ or $m=5$.
Assume that $\bar{\lambda}_{i}=\bar{\lambda}=0.15$, for $i=1,2, \ldots, n, \alpha_{j}=\alpha=1, \beta_{j}=\beta=1$, $a_{i, j}=1 / m, i=1,2, \ldots, n, j=1,2, \ldots, m$.
The probability that k creditors will default is given as follows for any $k \in \mathbb{N} \cup\{0\}$:
$\mathbb{P}(N=k)=\frac{1}{k!} g_{N}^{(k)}(0)=\frac{1}{k!} \frac{d^{k} g_{N}}{d t^{k}}$.
For the computation of $\mathbb{P}(N=k), k=0,1, \ldots, 100$, we can use the following recursive formula

The pgf of the loss distribution (contd.)

Example: Consider a credit portfolio with $n=100$ credits, and m risk factors, where $m=1$ or $m=5$.
Assume that $\bar{\lambda}_{i}=\bar{\lambda}=0.15$, for $i=1,2, \ldots, n, \alpha_{j}=\alpha=1, \beta_{j}=\beta=1$, $a_{i, j}=1 / m, i=1,2, \ldots, n, j=1,2, \ldots, m$.
The probability that k creditors will default is given as follows for any $k \in \mathbb{N} \cup\{0\}$:
$\mathbb{P}(N=k)=\frac{1}{k!} g_{N}^{(k)}(0)=\frac{1}{k!} \frac{d^{k} g_{N}}{d t^{k}}$.
For the computation of $\mathbb{P}(N=k), k=0,1, \ldots, 100$, we can use the following recursive formula
$g_{N}^{(k)}(0)=\sum_{l=0}^{k-1}\binom{k-1}{l} g_{N}^{(k-1-l)}(0) \sum_{j=1}^{m} l!\alpha_{j} \delta_{j}^{l+1}$, where $k>1$.

Monte Carlo methods in credit risk management

Monte Carlo methods in credit risk management

Let P be a credit portfolio consisting of m credits. The loss function is $L=\sum_{i=1}^{m} L_{i}$ and the single credit losses L_{i} are independent conditioned on a vector Z of economical impact factors.

Monte Carlo methods in credit risk management

Let P be a credit portfolio consisting of m credits. The loss function is $L=\sum_{i=1}^{m} L_{i}$ and the single credit losses L_{i} are independent conditioned on a vector Z of economical impact factors.
Goal: Determine $V_{a} R_{\alpha}(L)=q_{\alpha}(L), C V a R_{\alpha}=E\left(L \mid L>q_{\alpha}(L)\right)$, $C V_{a} R_{i, \alpha}=E\left(L_{i} \mid L>q_{\alpha}(L)\right)$, for all i.

Monte Carlo methods in credit risk management

Let P be a credit portfolio consisting of m credits.
The loss function is $L=\sum_{i=1}^{m} L_{i}$ and the single credit losses L_{i} are independent conditioned on a vector Z of economical impact factors.
Goal: Determine $\operatorname{VaR}_{\alpha}(L)=q_{\alpha}(L), C V a R_{\alpha}=E\left(L \mid L>q_{\alpha}(L)\right)$, $C V_{a} R_{i, \alpha}=E\left(L_{i} \mid L>q_{\alpha}(L)\right)$, for all i.
Application of Monte Carlo (MC) simulation has to deal with the simulation of rare events!
E.g. for $\alpha=0,99$ only 1% of the standard MC simulations will lead to a loss L, such that $L>q_{\alpha}(L)$.

Monte Carlo methods in credit risk management

Let P be a credit portfolio consisting of m credits.
The loss function is $L=\sum_{i=1}^{m} L_{i}$ and the single credit losses L_{i} are independent conditioned on a vector Z of economical impact factors.
Goal: Determine $V_{a} R_{\alpha}(L)=q_{\alpha}(L), C V a R_{\alpha}=E\left(L \mid L>q_{\alpha}(L)\right)$, $C V_{a} R_{i, \alpha}=E\left(L_{i} \mid L>q_{\alpha}(L)\right)$, for all i.
Application of Monte Carlo (MC) simulation has to deal with the simulation of rare events!
E.g. for $\alpha=0,99$ only 1% of the standard MC simulations will lead to a loss L, such that $L>q_{\alpha}(L)$.
The standard MC estimator is:

$$
\widehat{\mathrm{CVaR}}_{\alpha}^{(M C)}(L)=\frac{1}{\sum_{i=1}^{n} I_{\left(q_{\alpha},+\infty\right)}\left(L^{(i)}\right)} \sum_{i=1}^{n} L^{(i)} I_{\left(q_{\alpha},+\infty\right)}\left(L^{(i)}\right),
$$

where L_{i} is the value of the loss in the i-th simulation run.

Monte Carlo methods in credit risk management

Let P be a credit portfolio consisting of m credits.
The loss function is $L=\sum_{i=1}^{m} L_{i}$ and the single credit losses L_{i} are independent conditioned on a vector Z of economical impact factors.
Goal: Determine $V_{a} R_{\alpha}(L)=q_{\alpha}(L), C V a R_{\alpha}=E\left(L \mid L>q_{\alpha}(L)\right)$, $C V_{a} R_{i, \alpha}=E\left(L_{i} \mid L>q_{\alpha}(L)\right)$, for all i.
Application of Monte Carlo (MC) simulation has to deal with the simulation of rare events!
E.g. for $\alpha=0,99$ only 1% of the standard MC simulations will lead to a loss L, such that $L>q_{\alpha}(L)$.
The standard MC estimator is:

$$
\widehat{C V a R}_{\alpha}^{(M C)}(L)=\frac{1}{\sum_{i=1}^{n} I_{\left(q_{\alpha},+\infty\right)}\left(L^{(i)}\right)} \sum_{i=1}^{n} L^{(i)} l_{\left(q_{\alpha},+\infty\right)}\left(L^{(i)}\right),
$$

where L_{i} is the value of the loss in the i-th simulation run.
$\widehat{C V a R}_{\alpha}^{(M C)}(L)$ is unstable, i.e. it has a very high variance unless the number of simulation runs is very high.

Basics of importance sampling

Basics of importance sampling

Let X be a r.v. in a probability space (Ω, \mathcal{F}, P) with absolutely continuous distribution function and density function f.
Goal: Determine $\theta=E(h(X))=\int_{-\infty}^{\infty} h(x) f(x) d x$ for some given function h.

Basics of importance sampling

Let X be a r.v. in a probability space (Ω, \mathcal{F}, P) with absolutely continuous distribution function and density function f.
Goal: Determine $\theta=E(h(X))=\int_{-\infty}^{\infty} h(x) f(x) d x$ for some given function h.
Examples:
Set $h(x)=I_{A}(x)$ to compute the probability of an event A. Set $h(x)=x \mathbb{I}_{\{x>c\}}(x)$ with $c=\operatorname{VaR}(X)$ to compute $\operatorname{CVaR}(X)$.

Basics of importance sampling

Let X be a r.v. in a probability space (Ω, \mathcal{F}, P) with absolutely continuous distribution function and density function f.
Goal: Determine $\theta=E(h(X))=\int_{-\infty}^{\infty} h(x) f(x) d x$ for some given function h.
Examples:
Set $h(x)=I_{A}(x)$ to compute the probability of an event A.
Set $h(x)=x \mathbb{I}_{\{x>c\}}(x)$ with $c=\operatorname{VaR}(X)$ to compute $C \operatorname{VaR}(X)$.
Algorithm: Monte Carlo integration
(1) Simulate $X_{1}, X_{2}, \ldots, X_{n}$ independently with density f.
(2) Compute the standard MC estimator $\hat{\theta}_{n}^{(M C)}=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)$.

Basics of importance sampling

Let X be a r.v. in a probability space (Ω, \mathcal{F}, P) with absolutely continuous distribution function and density function f.
Goal: Determine $\theta=E(h(X))=\int_{-\infty}^{\infty} h(x) f(x) d x$ for some given function h.
Examples:
Set $h(x)=I_{A}(x)$ to compute the probability of an event A.
Set $h(x)=x \mathbb{I}_{\{x>c\}}(x)$ with $c=\operatorname{VaR}(X)$ to compute $C \operatorname{VaR}(X)$.
Algorithm: Monte Carlo integration
(1) Simulate $X_{1}, X_{2}, \ldots, X_{n}$ independently with density f.
(2) Compute the standard MC estimator $\hat{\theta}_{n}^{(M C)}=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)$.

The strong low of large numbers implies $\lim _{n \rightarrow \infty} \hat{\theta}_{n}^{(M C)}=\theta$ almost surely.

Basics of importance sampling

Let X be a r.v. in a probability space (Ω, \mathcal{F}, P) with absolutely continuous distribution function and density function f.
Goal: Determine $\theta=E(h(X))=\int_{-\infty}^{\infty} h(x) f(x) d x$ for some given function h.
Examples:
Set $h(x)=I_{A}(x)$ to compute the probability of an event A.
Set $h(x)=x \mathbb{I}_{\{x>c\}}(x)$ with $c=\operatorname{VaR}(X)$ to compute $C \operatorname{VaR}(X)$.
Algorithm: Monte Carlo integration
(1) Simulate $X_{1}, X_{2}, \ldots, X_{n}$ independently with density f.
(2) Compute the standard MC estimator $\hat{\theta}_{n}^{(M C)}=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right)$.

The strong low of large numbers implies $\lim _{n \rightarrow \infty} \hat{\theta}_{n}^{(M C)}=\theta$ almost surely.
In case of rare events, e.g. $h(x)=I_{A}(x)$ with $\mathbb{P}(A) \ll 1$, the convergence is very slow.

Importance sampling (contd.)

Importance sampling (contd.)

Let g be a probability density function, such that $f(x)>0 \Rightarrow g(x)>0$.
We define the likelihood ratio as: $r(x):=\left\{\begin{array}{cl}\frac{f(x)}{g(x)} & g(x)>0 \\ 0 & g(x)=0\end{array}\right.$

Importance sampling (contd.)

Let g be a probability density function, such that $f(x)>0 \Rightarrow g(x)>0$.
We define the likelihood ratio as: $r(x):=\left\{\begin{array}{cl}\frac{f(x)}{g(x)} & g(x)>0 \\ 0 & g(x)=0\end{array}\right.$
The following equality holds:

$$
\theta=\int_{-\infty}^{\infty} h(x) r(x) g(x) d x=E_{g}(h(x) r(x))
$$

Algorithm: Importance sampling
(1) Simulate $X_{1}, X_{2}, \ldots, X_{n}$ independently with density g.
(2) Compute the IS-estimator $\hat{\theta}_{n}^{(I S)}=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right) r\left(X_{i}\right)$.
g is called importance sampling density (IS density).

Importance sampling (contd.)

Let g be a probability density function, such that $f(x)>0 \Rightarrow g(x)>0$.
We define the likelihood ratio as: $r(x):=\left\{\begin{array}{cl}\frac{f(x)}{g(x)} & g(x)>0 \\ 0 & g(x)=0\end{array}\right.$
The following equality holds:

$$
\theta=\int_{-\infty}^{\infty} h(x) r(x) g(x) d x=E_{g}(h(x) r(x))
$$

Algorithm: Importance sampling
(1) Simulate $X_{1}, X_{2}, \ldots, X_{n}$ independently with density g.
(2) Compute the IS-estimator $\hat{\theta}_{n}^{(I S)}=\frac{1}{n} \sum_{i=1}^{n} h\left(X_{i}\right) r\left(X_{i}\right)$.
g is called importance sampling density (IS density).
Goal: choose an IS density g such that the variance of the IS estimator is much smaller than the variance of the standard MC-estimator.

$$
\begin{gathered}
\operatorname{var}\left(\hat{\theta}_{n}^{(I S)}\right)=\frac{1}{n}\left(E_{g}\left(h^{2}(X) r^{2}(X)\right)-\theta^{2}\right) \\
\quad \operatorname{var}\left(\hat{\theta}_{n}^{(M C)}\right)=\frac{1}{n}\left(E_{f}\left(h^{2}(X)\right)-\theta^{2}\right)
\end{gathered}
$$

Importance sampling (contd.)

Importance sampling (contd.)

Theoretically the variance of the IS estimator can be reduced to 0 !

Importance sampling (contd.)

Theoretically the variance of the IS estimator can be reduced to 0 !
Assume $h(x) \geq 0, \forall x$.
For $g^{*}(x)=f(x) h(x) / E(h(x))$ we get : $\hat{\theta}_{1}^{(I S)}=h\left(X_{1}\right) r\left(X_{1}\right)=E(h(X))$.
The IS estimator yields the correct value already after one single simulation!

Importance sampling (contd.)

Theoretically the variance of the IS estimator can be reduced to 0 !
Assume $h(x) \geq 0, \forall x$.
For $g^{*}(x)=f(x) h(x) / E(h(x))$ we get : $\hat{\theta}_{1}^{(I S)}=h\left(X_{1}\right) r\left(X_{1}\right)=E(h(X))$.
The IS estimator yields the correct value already after one single simulation!

Let $h(x)=\mathbb{I}_{\{X \geq c\}}(x)$ where $c \gg E(X)$ (rare event).

Importance sampling (contd.)

Theoretically the variance of the IS estimator can be reduced to 0 !
Assume $h(x) \geq 0, \forall x$.
For $g^{*}(x)=f(x) h(x) / E(h(x))$ we get : $\hat{\theta}_{1}^{(I S)}=h\left(X_{1}\right) r\left(X_{1}\right)=E(h(X))$.
The IS estimator yields the correct value already after one single simulation!

Let $h(x)=\mathbb{I}_{\{X \geq c\}}(x)$ where $c \gg E(X)$ (rare event).
We have $E\left(h^{2}(X)\right)=P(X \geq c)$ and

$$
\begin{aligned}
& E_{g}\left(h^{2}(X) r^{2}(X)\right)=\int_{-\infty}^{\infty} h^{2}(x) r^{2}(x) g(x) d x=E_{g}\left(r^{2}(X) ; X \geq c\right)= \\
& \int_{-\infty}^{\infty} h^{2}(x) r(x) f(x) d x=\int_{-\infty}^{\infty} h(x) r(x) f(x) d x=E_{f}(r(X) ; X \geq c)
\end{aligned}
$$

Importance sampling (contd.)

Theoretically the variance of the IS estimator can be reduced to 0 !
Assume $h(x) \geq 0, \forall x$.
For $g^{*}(x)=f(x) h(x) / E(h(x))$ we get : $\hat{\theta}_{1}^{(I S)}=h\left(X_{1}\right) r\left(X_{1}\right)=E(h(X))$.
The IS estimator yields the correct value already after one single simulation!

Let $h(x)=\mathbb{I}_{\{X \geq c\}}(x)$ where $c \gg E(X)$ (rare event).
We have $E\left(h^{2}(X)\right)=P(X \geq c)$ and

$$
\begin{aligned}
& E_{g}\left(h^{2}(X) r^{2}(X)\right)=\int_{-\infty}^{\infty} h^{2}(x) r^{2}(x) g(x) d x=E_{g}\left(r^{2}(X) ; X \geq c\right)= \\
& \int_{-\infty}^{\infty} h^{2}(x) r(x) f(x) d x=\int_{-\infty}^{\infty} h(x) r(x) f(x) d x=E_{f}(r(X) ; X \geq c)
\end{aligned}
$$

Goal: choose g such that $E_{g}\left(h^{2}(X) r^{2}(X)\right)$ becomes small, i.e. such that $r(x)$ is small for $x \geq c$.

Importance sampling (contd.)

Theoretically the variance of the IS estimator can be reduced to 0 !
Assume $h(x) \geq 0, \forall x$.
For $g^{*}(x)=f(x) h(x) / E(h(x))$ we get : $\hat{\theta}_{1}^{(I S)}=h\left(X_{1}\right) r\left(X_{1}\right)=E(h(X))$.
The IS estimator yields the correct value already after one single simulation!

Let $h(x)=\mathbb{I}_{\{X \geq c\}}(x)$ where $c \gg E(X)$ (rare event).
We have $E\left(h^{2}(X)\right)=P(X \geq c)$ and

$$
\begin{aligned}
& E_{g}\left(h^{2}(X) r^{2}(X)\right)=\int_{-\infty}^{\infty} h^{2}(x) r^{2}(x) g(x) d x=E_{g}\left(r^{2}(X) ; X \geq c\right)= \\
& \int_{-\infty}^{\infty} h^{2}(x) r(x) f(x) d x=\int_{-\infty}^{\infty} h(x) r(x) f(x) d x=E_{f}(r(X) ; X \geq c)
\end{aligned}
$$

Goal: choose g such that $E_{g}\left(h^{2}(X) r^{2}(X)\right)$ becomes small, i.e. such that $r(x)$ is small for $x \geq c$. Aquivalently, the event $X \geq c$ should be more probable under density g than under density f.

Exponential tilting: Determining the IS density for light

 tailed r.v.
Exponential tilting: Determining the IS density for light

 tailed r.v.Let $M_{x}(t): \mathbb{R} \rightarrow \mathbb{R}$ be the moment generating function of the r.v. X with probability density f :

$$
M_{X}(t)=E\left(e^{t x}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x
$$

Exponential tilting: Determining the IS density for light

 tailed r.v.Let $M_{x}(t): \mathbb{R} \rightarrow \mathbb{R}$ be the moment generating function of the r.v. X with probability density f :

$$
M_{X}(t)=E\left(e^{t x}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x
$$

Consider the IS density $g_{t}(x):=\frac{e^{t x} f(x)}{M_{x}(t)}$. Then $r_{t}(x)=\frac{f(x)}{g_{t}(x)}=M_{X}(t) e^{-t x}$.

Exponential tilting: Determining the IS density for light

 tailed r.v.Let $M_{x}(t): \mathbb{R} \rightarrow \mathbb{R}$ be the moment generating function of the r.v. X with probability density f :

$$
M_{X}(t)=E\left(e^{t x}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x
$$

Consider the IS density $g_{t}(x):=\frac{e^{t x} f(x)}{M_{x}(t)}$. Then
$r_{t}(x)=\frac{f(x)}{g_{t}(x)}=M_{X}(t) e^{-t x}$.
Let $\mu_{t}:=E_{g_{t}}(X)=E\left(X e^{t X}\right) / M_{X}(t)$.

Exponential tilting: Determining the IS density for light tailed r.v.

Let $M_{x}(t): \mathbb{R} \rightarrow \mathbb{R}$ be the moment generating function of the r.v. X with probability density f :

$$
M_{X}(t)=E\left(e^{t x}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x
$$

Consider the IS density $g_{t}(x):=\frac{e^{t x} f(x)}{M_{x}(t)}$. Then
$r_{t}(x)=\frac{f(x)}{g_{t}(x)}=M_{X}(t) e^{-t x}$.
Let $\mu_{t}:=E_{g_{t}}(X)=E\left(X e^{t X}\right) / M_{X}(t)$.
How to determine a suitable t for a specific $h(x)$?
For example for the estimation of the tail probability $\mathbb{P}(X \geq c)$?

Exponential tilting: Determining the IS density for light tailed r.v.

Let $M_{x}(t): \mathbb{R} \rightarrow \mathbb{R}$ be the moment generating function of the r.v. X with probability density f :

$$
M_{X}(t)=E\left(e^{t x}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x
$$

Consider the IS density $g_{t}(x):=\frac{e^{t x} f(x)}{M_{x}(t)}$. Then
$r_{t}(x)=\frac{f(x)}{g_{t}(x)}=M_{X}(t) e^{-t x}$.
Let $\mu_{t}:=E_{g_{t}}(X)=E\left(X e^{t X}\right) / M_{X}(t)$.
How to determine a suitable t for a specific $h(x)$?
For example for the estimation of the tail probability $\mathbb{P}(X \geq c)$?
Goal: choose t such that $E(r(X) ; X \geq c)=E\left(\mathbb{I}_{\{X \geq c\}} M_{X}(t) e^{-t X}\right)$ becomes small.

Exponential tilting: Determining the IS density for light tailed r.v.

Let $M_{x}(t): \mathbb{R} \rightarrow \mathbb{R}$ be the moment generating function of the r.v. X with probability density f :

$$
M_{X}(t)=E\left(e^{t x}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x
$$

Consider the IS density $g_{t}(x):=\frac{e^{t x} f(x)}{M_{x}(t)}$. Then
$r_{t}(x)=\frac{f(x)}{g_{t}(x)}=M_{X}(t) e^{-t x}$.
Let $\mu_{t}:=E_{g_{t}}(X)=E\left(X e^{t X}\right) / M_{X}(t)$.
How to determine a suitable t for a specific $h(x)$?
For example for the estimation of the tail probability $\mathbb{P}(X \geq c)$?
Goal: choose t such that $E(r(X) ; X \geq c)=E\left(\mathbb{I}_{\{X \geq c\}} M_{X}(t) e^{-t X}\right)$ becomes small.
$e^{-t x} \leq e^{-t c}$, for $x \geq c, t \geq 0 \Rightarrow E\left(\mathbb{I}_{\{X \geq c\}} M_{X}(t) e^{-t X}\right) \leq M_{X}(t) e^{-t c}$.

Exponential tilting: Determining the IS density for light tailed r.v.

Let $M_{x}(t): \mathbb{R} \rightarrow \mathbb{R}$ be the moment generating function of the r.v. X with probability density f :

$$
M_{X}(t)=E\left(e^{t x}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x
$$

Consider the IS density $g_{t}(x):=\frac{e^{t x} f(x)}{M_{x}(t)}$. Then
$r_{t}(x)=\frac{f(x)}{g_{t}(x)}=M_{X}(t) e^{-t x}$.
Let $\mu_{t}:=E_{g_{t}}(X)=E\left(X e^{t X}\right) / M_{X}(t)$.
How to determine a suitable t for a specific $h(x)$?
For example for the estimation of the tail probability $\mathbb{P}(X \geq c)$?
Goal: choose t such that $E(r(X) ; X \geq c)=E\left(\mathbb{I}_{\{X \geq c\}} M_{X}(t) e^{-t X}\right)$ becomes small.
$e^{-t x} \leq e^{-t c}$, for $x \geq c, t \geq 0 \Rightarrow E\left(\mathbb{I}_{\{X \geq c\}} M_{X}(t) e^{-t X}\right) \leq M_{X}(t) e^{-t c}$. Set $t(c):==\operatorname{argmin}\left\{M_{X}(t) e^{-t c}: t \geq 0\right\}$ where $t(c)$ is the solution of the equation $\mu_{t}=c$.

Exponential tilting: Determining the IS density for light tailed r.v.

Let $M_{x}(t): \mathbb{R} \rightarrow \mathbb{R}$ be the moment generating function of the r.v. X with probability density f :

$$
M_{X}(t)=E\left(e^{t x}\right)=\int_{-\infty}^{\infty} e^{t x} f(x) d x
$$

Consider the IS density $g_{t}(x):=\frac{e^{t x} f(x)}{M_{x}(t)}$. Then
$r_{t}(x)=\frac{f(x)}{g_{t}(x)}=M_{X}(t) e^{-t x}$.
Let $\mu_{t}:=E_{g_{t}}(X)=E\left(X e^{t X}\right) / M_{X}(t)$.
How to determine a suitable t for a specific $h(x)$?
For example for the estimation of the tail probability $\mathbb{P}(X \geq c)$?
Goal: choose t such that $E(r(X) ; X \geq c)=E\left(\mathbb{I}_{\{X \geq c\}} M_{X}(t) e^{-t X}\right)$ becomes small.
$e^{-t x} \leq e^{-t c}$, for $x \geq c, t \geq 0 \Rightarrow E\left(\mathbb{I}_{\{X \geq c\}} M_{X}(t) e^{-t X}\right) \leq M_{X}(t) e^{-t c}$. Set $t(c):==\operatorname{argmin}\left\{M_{X}(t) e^{-t c}: t \geq 0\right\}$ where $t(c)$ is the solution of the equation $\mu_{t}=c$.
(A unique solution of the above equality exists for all relevant values of c, see e.g. Embrechts et al. for a proof).

IS in the case of probability measures
(useful for the estimation of the credit portfolio risk)

IS in the case of probability measures

(useful for the estimation of the credit portfolio risk)
Let f and g be probability densities. Define probability measures P and Q :

$$
P(A):=\int_{x \in A} f(x) d x \text { and } Q(A):=\int_{x \in A} g(x) d x \text { for } A \subset \mathbb{R}
$$

IS in the case of probability measures

(useful for the estimation of the credit portfolio risk)
Let f and g be probability densities. Define probability measures P and Q :
$P(A):=\int_{x \in A} f(x) d x$ and $Q(A):=\int_{x \in A} g(x) d x$ for $A \subset \mathbb{R}$.
Goal: Estimate the expected value $\theta:=E^{P}(h(X))$ of a given function $h: \mathcal{F} \rightarrow \mathbb{R}$ in the probability space (Ω, \mathcal{F}, P).

IS in the case of probability measures

(useful for the estimation of the credit portfolio risk)
Let f and g be probability densities. Define probability measures P and Q :
$P(A):=\int_{x \in A} f(x) d x$ and $Q(A):=\int_{x \in A} g(x) d x$ for $A \subset \mathbb{R}$.
Goal: Estimate the expected value $\theta:=E^{P}(h(X))$ of a given function $h: \mathcal{F} \rightarrow \mathbb{R}$ in the probability space (Ω, \mathcal{F}, P).
We have $\theta:=E^{P}(h(X))=E^{Q}(h(X) r(X))$ with $r(x):=d P / d Q$, thus r is the density of P w.r.t. Q.

IS in the case of probability measures

(useful for the estimation of the credit portfolio risk)
Let f and g be probability densities. Define probability measures P and Q :
$P(A):=\int_{x \in A} f(x) d x$ and $Q(A):=\int_{x \in A} g(x) d x$ for $A \subset \mathbb{R}$.
Goal: Estimate the expected value $\theta:=E^{P}(h(X))$ of a given function $h: \mathcal{F} \rightarrow \mathbb{R}$ in the probability space (Ω, \mathcal{F}, P).
We have $\theta:=E^{P}(h(X))=E^{Q}(h(X) r(X))$ with $r(x):=d P / d Q$, thus r is the density of P w.r.t. Q.

Exponential tilting in the case of probability measures:

Let X be a r.v. in (Ω, \mathcal{F}, P) such that $M_{X}(t)=E^{P}(\exp \{t X\})<\infty, \forall t$.

IS in the case of probability measures

(useful for the estimation of the credit portfolio risk)
Let f and g be probability densities. Define probability measures P and Q :
$P(A):=\int_{x \in A} f(x) d x$ and $Q(A):=\int_{x \in A} g(x) d x$ for $A \subset \mathbb{R}$.
Goal: Estimate the expected value $\theta:=E^{P}(h(X))$ of a given function $h: \mathcal{F} \rightarrow \mathbb{R}$ in the probability space (Ω, \mathcal{F}, P).
We have $\theta:=E^{P}(h(X))=E^{Q}(h(X) r(X))$ with $r(x):=d P / d Q$, thus r is the density of P w.r.t. Q.

Exponential tilting in the case of probability measures:

Let X be a r.v. in (Ω, \mathcal{F}, P) such that $M_{X}(t)=E^{P}(\exp \{t X\})<\infty, \forall t$.
Define a probability measure Q_{t} in (Ω, \mathcal{F}), such that

$$
d Q_{t} / d P=\exp (t X) / M_{X}(t) \text {, i.e. } Q_{t}(A):=E^{P}\left(\frac{\exp \{t X\}}{M_{x}(t)} ; A\right) .
$$

IS in the case of probability measures

(useful for the estimation of the credit portfolio risk)
Let f and g be probability densities. Define probability measures P and Q :
$P(A):=\int_{x \in A} f(x) d x$ and $Q(A):=\int_{x \in A} g(x) d x$ for $A \subset \mathbb{R}$.
Goal: Estimate the expected value $\theta:=E^{P}(h(X))$ of a given function $h: \mathcal{F} \rightarrow \mathbb{R}$ in the probability space (Ω, \mathcal{F}, P).
We have $\theta:=E^{P}(h(X))=E^{Q}(h(X) r(X))$ with $r(x):=d P / d Q$, thus r is the density of P w.r.t. Q.

Exponential tilting in the case of probability measures:

Let X be a r.v. in (Ω, \mathcal{F}, P) such that $M_{X}(t)=E^{P}(\exp \{t X\})<\infty, \forall t$.
Define a probability measure Q_{t} in (Ω, \mathcal{F}), such that $d Q_{t} / d P=\exp (t X) / M_{X}(t)$, i.e. $Q_{t}(A):=E^{P}\left(\frac{\exp \{t X\}}{M_{X}(t)} ; A\right)$.
We have $\frac{d P}{d Q_{t}}=M_{X}(t) \exp (-t X)=: r_{t}(X)$.

IS in the case of probability measures

(useful for the estimation of the credit portfolio risk)
Let f and g be probability densities. Define probability measures P and Q :
$P(A):=\int_{x \in A} f(x) d x$ and $Q(A):=\int_{x \in A} g(x) d x$ for $A \subset \mathbb{R}$.
Goal: Estimate the expected value $\theta:=E^{P}(h(X))$ of a given function $h: \mathcal{F} \rightarrow \mathbb{R}$ in the probability space (Ω, \mathcal{F}, P).
We have $\theta:=E^{P}(h(X))=E^{Q}(h(X) r(X))$ with $r(x):=d P / d Q$, thus r is the density of P w.r.t. Q.

Exponential tilting in the case of probability measures:

Let X be a r.v. in (Ω, \mathcal{F}, P) such that $M_{X}(t)=E^{P}(\exp \{t X\})<\infty, \forall t$.
Define a probability measure Q_{t} in (Ω, \mathcal{F}), such that
$d Q_{t} / d P=\exp (t X) / M_{X}(t)$, i.e. $Q_{t}(A):=E^{P}\left(\frac{\exp \{t X\}}{M_{X}(t)} ; A\right)$.
We have $\frac{d P}{d Q_{t}}=M_{X}(t) \exp (-t X)=: r_{t}(X)$.
The IS algorithm does not change: Simulate independent realisations of X_{i} in $\left(\Omega, \mathcal{F}, Q_{t}\right)$ and set $\hat{\theta}_{n}^{(I S)}=(1 / n) \sum_{i=1}^{n} X_{i} r_{t}\left(X_{i}\right)$.

