
Approaches based on mixture models

Assumptions:

(1) The default of each debtor depends on a number of
(macro-economical) factors which are modelled stochastically.

(2) For a given realisation of these factors the defaults of different
debtors are independent on each other.

Definition: The Bernoulli mixture distribution
The 0-1 random vector X = (X1, . . . ,Xn)T has a Bernoulli mixture
distribution (BMD) iff there exists a random vector
Z = (Z1,Z2, . . . ,Zm)T , m < n, and the functions fi : Rm → [0, 1],
i = 1, 2, . . . , n, such that X conditioned on Z has independent
components with Xi |Z ∼ Bernoulli(fi (Z )).

Then P(X = x |Z ) =
∏n

i=1 fi (Z )xi (1− fi (Z ))1−xi ,
∀x = (x1, . . . , xn)T ∈ {0, 1}n

The unconditional distribution:

P(X = x) = E (P(X = x |Z )) = E

(∏n
i=1 fi (Z )xi (1− fi (Z ))1−xi

)
If all function fi coincide, i.e. fi = f , ∀i , we get N|Z ∼ Bin(n, f (Z )) for
the number N =

∑n
i=1 Xi of defaults.
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The Poisson mixture distribution

Definition: The discrete random vector X = (X1, . . . ,Xn)T has a
Poisson mixture distribution (PMD) iff there exists a random vector
Z = (Z1,Z2, . . . ,Zm)T , m < n, and the functions λi : Rm → (0,∞),
i = 1, 2, . . . , n, such that X conditioned on Z has independent
components with Xi |Z ∼ Poi(λi (Z )).

Then P(X = x |Z ) =
∏n

i=1
λi (Z)xi

xi !
e−λi (Z)

∀x = (x1, . . . , xn)T ∈ (N ∪ {0})n.

The unconditional distribution:

P(X = x) = E (P(X = x |Z )) = E

(∏n
i=1

λi (Z)xi

xi !
e−λi (Z)

)
Let X̄i := I[1,∞)(Xi ).

Then X̄ = (X̄1, . . . , X̄n) is BMD with fi (Z ) = 1− e−λi (Z)

If λi (Z ) << 1 we get for the number Ñ =
∑n

i=1 X̄i ≈
∑n

i=1 Xi of
defaults:

Ñ|Z ∼ Poisson(λ̄(Z )), where λ̄ =
∑n

i=1 λi (Z ).
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∑n

i=1 X̄i ≈
∑n

i=1 Xi of
defaults:
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Examples of Bernoulli mixture distributions

Assumptions :

I Z is univariate (i.e. there is only one risk factor)

I fi = f , for all i ∈ {1, 2, . . . , n}

We have P(Xi = 1|Z ) = f (Z ), ∀i ; N|Z =
∑n

i=1 Xi ∼ Bin(n, f (Z )).

The unconditional probability of default of the first k debtors is
P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0) =
E (P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0|Z )) =
E (f (Z )k(1− f (Z ))n−k)

Let G be the distribution function of Z . Then
P(X1 = 1, . . . ,Xk = 1,Xk+1 = 0, . . . ,Xn = 0) =∫∞
−∞ f (z)k(1− f (z))n−kd(G (z))

The distribution of the number N of defaults:

P(N = k) =

(
n

k

)∫ ∞
−∞

f (z)k(1− f (z))n−kd(G (z))
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The beta-mixture distribution

Let Z ∼ Beta(a, b) and f (z) = z .

The d.f. g of Z is given as g(z) = 1
β(a,b)z

a−1(1− z)b−1, for a, b > 0,

z ∈ (0, 1), where β(a, b) =
∫ 1

0
za−1(1− z)b−1dz is the Euler beta

function.

The distribution of the number of defaults:

P(N = k) =

(
n

k

)∫ 1

0

zk(1−z)n−kg(z)dz =

(
n

k

)
1

β(a, b)

∫ 1

0

za+k−1(1−z)n−k+b−1dz

=

(
n

k

)
β(a + k, b + n − k)

β(a, b)
is the beta-binomial distribution

The probit-normal mixture
is obtained with Z ∼ N(0, 1), f (z) = φ(µ+ σz), µ ∈ R, σ > 0, where φ
is the standard normal distribution.

The logit-normal mixture
is with Z ∼ N(0, 1), f (z) = (1 + exp{µ+ σz})−1, µ ∈ R, σ > 0.
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CreditRisk+ - a Poisson mixture model

(developed by CSFB in 1997, see Crouhy et al. (2000) and
www.credit suisse.com/investment banking/research/en/credit risk.jsp

Consider m independent risik factors Z1,Z2, . . . ,Zm, Zj ∼ Γ(αj , βj),
j = 1, 2, . . . ,m, with parameter αj , βj generally choosen such that such
that E (Zj) = 1.

Let λi (Z ) = λ̄i
∑m

j=1 aijZj ,
∑m

j=1 aij = 1 for i = 1, 2, . . . , n for some

parameters λ̄i > 0. Then E (λi (Z )) = λ̄i > 0) holds.

The density function of Zj is given as fj(z) =
zαj−1 exp{−z/βj}

β
αj
j Γ(αj )

The loss given default for debtor i is LGDi = (1− λi )Li , 1 ≤ i ≤ n,
where λi is the expected deterministic recovery rate and Li is the amount
of credit i .

The goal: approximate the loss disribution by a discrete distribution and
derive the generator function for the latter.
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The probability generating function and its properties

Let Y be a discrete r.v. taking values on {y1, . . . , ym} (a continuous r.v.
with density function f (y) in R). The probability generating function
(pgf) gY of Y is a mapping of [0, 1] to the reals defined as

gY (t) := E (tY ) =
∑m

i=1 t
yiP(Y = yi ) (gY (t) :=

∫∞
−∞ ty f (y)dy).

Some properties of probability generating functions:

(i) If Y ∼ Bernoulli(p), then gY (t) = 1 + p(t − 1).

(ii) If Y ∼ Poisson(λ), then gY (t) = exp{λ(t − 1)}.

(iii) If the r.v. X1, . . . ,Xn are independent, then
gX1+...+Xn(t) =

∏n
i=1 gXi (t).

(iv) Let Y be a r.v. with density function f and let gX |Y=y (t) be the pgf

of X |Y = y . Then gX (t) =
∫∞
−∞ gX |Y=y (t)f (y)dy .

(v) Let gX (t) be the pgf of X . Then P(X = k) = 1
k!g

(k)
X (0), where

g
(k)
X (t) = dkgX (t)

dtk
.
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The pgf of the loss distribution

The loss will be approximated as an integer multiple of a prespecified loss
unit L0 (e.g. Lo = 106 Euro):

LGDi = (1− λi )Li ≈
[

(1−λi )Li

L0

]
L0 = viL0 with vi :=

[
(1−λi )Li

L0

]
,

where [x ] = arg mint{|t − x | : t ∈ Z, t − x ∈ (−1/2, 1/2]}.

The loss function is then given by L =
∑n

i=1 X̄iviL0 ≈
∑n
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The pgf of the loss distribution (contd.)

Then
gN(t) =

∫∞
0
. . .
∫∞

0
gN|Z=(z1,z2,...,zm)f1(z1) . . . fm(zm)dz1 . . . dzm =∫ ∞

0

. . .

∫ ∞
0

exp

{
n∑

i=1

(
λ̄i

m∑
j=1

aijzj

)
(t − 1)

}
f1(z1) . . . fm(zm)dz1 . . . dzm =

∫ ∞
0

. . .

∫ ∞
0

exp

{
(t−1)

m∑
j=1

(
n∑

i=1

λ̄iaij︸ ︷︷ ︸
µj

)
zj)

}
f1(z1) . . . fm(zm)dz1 . . . dzm =

∫ ∞
0

. . .

∫ ∞
0

exp{(t− 1)µ1z1}f1(z1)dz1 . . . exp{(t− 1)µmzm}fm(zm)dzm =

m∏
j=1

∫ ∞
0

exp{zjµj(t − 1)} 1

β
αj

j Γ(αj)
z
αj−1
j exp{−zj/βj}dzj

The computation of each integral in the product above yields∫∞
0

1

Γ(αj )β
αj
j

exp{zjµj(t − 1)}zαj−1
j exp{−zj/βj}dzj =

(
1−δj
1−δj t

)αj

with

δj = βjµj/(1 + βjµj).
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The pgf of the loss distribution (contd.)

Thus we have gN(t) =
m∏
j=1

(
1− δj
1− δj t

)αj

.

Step 2 Determine the pgf of the (approximated) loss distribution
L =

∑n
i=1 XiviL0.

The conditional loss due to default of debtor i is Li |Z = vi (Xi |Z )

Li |Z are independent for i = 1, 2, . . . , n =⇒
gLi |Z (t) = E (tLi |Z ) = E (tviXi |Z ) = gXi |Z (tvi ) = exp{λi (Z )(tvi−1)}.
The pgf od the conditional overall loss is

gL|Z (t) = gL1+L2+...+Ln|Z (t) =
∏n

i=1 gLi |Z (t) =∏n
i=1 gXi |Z (tvi ) =exp

{∑m
j=1 Zj

(∑n
i=1 λ̄iaij(t

vi − 1)
)}

.

Analogous computations as in the case of gN(t) yield:

gL(t) =
m∏
j=1

(
1− δj

1− δjΛj(t)

)αj

wobei Λj(t) =
1

µj

n∑
i=1

λ̄iaij t
vi .
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The pgf of the loss distribution (contd.)

Example: Consider a credit portfolio with n = 100 credits, and m risk
factors, where m = 1 or m = 5.
Assume that λ̄i = λ̄ = 0.15, for i = 1, 2, . . . , n, αj = α = 1, βj = β = 1,
ai,j = 1/m, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

The probability that k creditors will default is given as follows for any
k ∈ N ∪ {0}:
P(N = k) = 1

k!g
(k)
N (0) = 1

k!
dkgN
dtk

.

For the computation of P(N = k), k = 0, 1, . . . , 100, we can use the
following recursive formula

g
(k)
N (0) =

∑k−1
l=0

(
k−1
l

)
g

(k−1−l)
N (0)

∑m
j=1 l!αjδ

l+1
j , where k > 1.
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Monte Carlo methods in credit risk management

Let P be a credit portfolio consisting of m credits.
The loss function is L =

∑m
i=1 Li and the single credit losses Li are

independent conditioned on a vector Z of economical impact factors.

Goal: Determine VaRα(L) = qα(L), CVaRα = E (L|L > qα(L)),
CVaRi,α = E (Li |L > qα(L)), for all i .

Application of Monte Carlo (MC) simulation has to deal with the
simulation of rare events!
E.g. for α = 0, 99 only 1% of the standard MC simulations will lead to a
loss L, such that L > qα(L).

The standard MC estimator is:

ĈVaR
(MC)

α (L) =
1∑n

i=1 I(qα,+∞)(L(i))

n∑
i=1

L(i)I(qα,+∞)(L
(i)) ,

where Li is the value of the loss in the i-th simulation run.

ĈVaR
(MC)

α (L) is unstable, i.e. it has a very high variance unless the
number of simulation runs is very high.
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ĈVaR
(MC)

α (L) is unstable, i.e. it has a very high variance unless the
number of simulation runs is very high.



Basics of importance sampling

Let X be a r.v. in a probability space (Ω,F ,P) with absolutely
continuous distribution function and density function f .

Goal: Determine θ = E (h(X )) =
∫∞
−∞ h(x)f (x)dx for some given

function h.

Examples:
Set h(x) = IA(x) to compute the probability of an event A.

Set h(x) = xI{x>c}(x) with c = VaR(X ) to compute CVaR(X ).

Algorithm: Monte Carlo integration

(1) Simulate X1,X2,. . . , Xn independently with density f .

(2) Compute the standard MC estimator θ̂
(MC)
n = 1

n

∑n
i=1 h(Xi ).

The strong low of large numbers implies lim
n→∞

θ̂(MC)
n = θ almost surely.

In case of rare events, e.g. h(x) = IA(x) with P(A) << 1, the
convergence is very slow.
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Importance sampling (contd.)

Let g be a probability density function, such that f (x) > 0⇒ g(x) > 0.

We define the likelihood ratio as: r(x) :=

{
f (x)
g(x) g(x) > 0

0 g(x) = 0

The following equality holds:

θ =

∫ ∞
−∞

h(x)r(x)g(x)dx = Eg (h(x)r(x))

Algorithm: Importance sampling

(1) Simulate X1,X2,. . . , Xn independently with density g .

(2) Compute the IS-estimator θ̂
(IS)
n = 1

n

∑n
i=1 h(Xi )r(Xi ).

g is called importance sampling density (IS density).

Goal: choose an IS density g such that the variance of the IS estimator is
much smaller than the variance of the standard MC-estimator.

var
(
θ̂(IS)
n

)
=

1

n
(Eg (h2(X )r2(X ))− θ2)

var
(
θ̂(MC)
n

)
=

1

n
(Ef (h2(X ))− θ2)
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Importance sampling (contd.)

Theoretically the variance of the IS estimator can be reduced to 0!

Assume h(x) ≥ 0,∀x .

For g∗(x) = f (x)h(x)/E (h(x)) we get : θ̂
(IS)
1 = h(X1)r(X1) = E (h(X )).

The IS estimator yields the correct value already after one single
simulation!

Let h(x) = I{X≥c}(x) where c >> E (X ) (rare event).

We have E (h2(X )) = P(X ≥ c) and

Eg (h2(X )r2(X )) =

∫ ∞
−∞

h2(x)r2(x)g(x)dx = Eg (r2(X );X ≥ c) =

∫ ∞
−∞

h2(x)r(x)f (x)dx =

∫ ∞
−∞

h(x)r(x)f (x)dx = Ef (r(X );X ≥ c)

Goal: choose g such that Eg (h2(X )r2(X )) becomes small, i.e. such that
r(x) is small for x ≥ c . Aquivalently, the event X ≥ c should be more
probable under density g than under density f .
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Exponential tilting: Determining the IS density for light
tailed r.v.

Let Mx(t) : R→ R be the moment generating function of the r.v. X with
probability density f :

MX (t) = E (etX ) =

∫ ∞
−∞

etx f (x)dx

Consider the IS density gt(x) := etx f (x)
MX (t) . Then

rt(x) = f (x)
gt(x) = MX (t)e−tx .

Let µt := Egt (X ) = E (XetX )/MX (t).

How to determine a suitable t for a specific h(x)?
For example for the estimation of the tail probability P(X ≥ c)?

Goal: choose t such that E (r(X );X ≥ c) = E (I{X≥c}MX (t)e−tX )
becomes small.

e−tx ≤ e−tc , for x ≥ c , t ≥ 0 ⇒ E (I{X≥c}MX (t)e−tX ) ≤ MX (t)e−tc .

Set t(c) :== argmin{MX (t)e−tc : t ≥ 0} where t(c) is the solution of
the equation µt = c .

(A unique solution of the above equality exists for all relevant values of c ,
see e.g. Embrechts et al. for a proof).
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IS in the case of probability measures
(useful for the estimation of the credit portfolio risk)

Let f and g be probability densities. Define probability measures P and
Q:
P(A) :=

∫
x∈A f (x)dx and Q(A) :=

∫
x∈A g(x)dx for A ⊂ R.

Goal: Estimate the expected value θ := EP(h(X )) of a given function
h : F → R in the probability space (Ω,F ,P).

We have θ := EP(h(X )) = EQ(h(X )r(X )) with r(x) := dP/dQ, thus r
is the density of P w.r.t. Q.

Exponential tilting in the case of probability measures:
Let X be a r.v. in (Ω,F ,P) such that MX (t) = EP(exp{tX}) <∞, ∀t.

Define a probability measure Qt in (Ω,F), such that

dQt/dP = exp(tX )/MX (t), i.e. Qt(A) := EP
(

exp{tX}
MX (t) ;A

)
.

We have dP
dQt

= MX (t) exp(−tX ) =: rt(X ).

The IS algorithm does not change: Simulate independent realisations of

Xi in (Ω,F ,Qt) and set θ̂
(IS)
n = (1/n)

∑n
i=1 Xi rt(Xi ).
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Goal: Estimate the expected value θ := EP(h(X )) of a given function
h : F → R in the probability space (Ω,F ,P).

We have θ := EP(h(X )) = EQ(h(X )r(X )) with r(x) := dP/dQ, thus r
is the density of P w.r.t. Q.

Exponential tilting in the case of probability measures:
Let X be a r.v. in (Ω,F ,P) such that MX (t) = EP(exp{tX}) <∞, ∀t.

Define a probability measure Qt in (Ω,F), such that

dQt/dP = exp(tX )/MX (t), i.e. Qt(A) := EP
(

exp{tX}
MX (t) ;A

)
.

We have dP
dQt

= MX (t) exp(−tX ) =: rt(X ).

The IS algorithm does not change: Simulate independent realisations of

Xi in (Ω,F ,Qt) and set θ̂
(IS)
n = (1/n)

∑n
i=1 Xi rt(Xi ).


