What is credit risk?

What is credit risk?

Citation from McNeil, Frey und Embrechts (2005):
Credit risk is the risk that the value of a portfolio changes due to unexpected changes in the credit quality of issuers or trading partners. This subsumes both losses due to defaults and losses caused by changes in credit quality such as the downgrading of a counterparty in an internal or external rating system.

What is credit risk?

Citation from McNeil, Frey und Embrechts (2005):
Credit risk is the risk that the value of a portfolio changes due to unexpected changes in the credit quality of issuers or trading partners. This subsumes both losses due to defaults and losses caused by changes in credit quality such as the downgrading of a counterparty in an internal or external rating system.

Examples of finance instruments affected by credit risk

- bond portfolios
- OTC ("over the counter") transactions
- trades with credit derivatives

A generic model of credit risk

A generic model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.

A generic model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$

A generic model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$
$\lambda_{i} \in[0,1]$: "recovery rate" of bond i
$1-\lambda_{i}$: percentage of lost value of bond i in case of default until time T

A generic model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$
$\lambda_{i} \in[0,1]$: "recovery rate" of bond i
$1-\lambda_{i}$: percentage of lost value of bond i in case of default until time T
The loss given default for bond i at time $T: L G D_{i}=\left(1-\lambda_{i}\right) L_{i}$

A generic model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$
$\lambda_{i} \in[0,1]$: "recovery rate" of bond i
$1-\lambda_{i}$: percentage of lost value of bond i in case of default until time T
The loss given default for bond i at time $T: L G D_{i}=\left(1-\lambda_{i}\right) L_{i}$
Model the default of bond i until time T by a Bernoulli distributed r.v. X_{i} with with $p_{i}=P\left(X_{i}=1\right)$:

$$
X_{i}=\left\{\begin{array}{cc}
1 & \text { bond } i \text { defaults } \\
0 & \text { otherwise }
\end{array}\right.
$$

A generic model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$
$\lambda_{i} \in[0,1]$: "recovery rate" of bond i
$1-\lambda_{i}$: percentage of lost value of bond i in case of default until time T
The loss given default for bond i at time $T: L G D_{i}=\left(1-\lambda_{i}\right) L_{i}$
Model the default of bond i until time T by a Bernoulli distributed r.v. X_{i} with with $p_{i}=P\left(X_{i}=1\right)$:

$$
X_{i}=\left\{\begin{array}{cc}
1 & \text { bond } i \text { defaults } \\
0 & \text { otherwise }
\end{array}\right.
$$

Total loss at time $T: L=\sum_{i=1}^{n} X_{i} \cdot L G D_{i}=\sum_{i=1}^{n} X_{i}\left(1-\lambda_{i}\right) L_{i}$.

A generic model of credit risk

Let P be a portfolio of n risky bonds of nominal value $L_{i}, i=1,2, \ldots, n$, respectively, set up at time T_{0}.
p_{i} : the probability that (the issuer of) bond i defaults until time T, $T>T_{0}$
$\lambda_{i} \in[0,1]$: "recovery rate" of bond i
$1-\lambda_{i}$: percentage of lost value of bond i in case of default until time T
The loss given default for bond i at time $T: L G D_{i}=\left(1-\lambda_{i}\right) L_{i}$
Model the default of bond i until time T by a Bernoulli distributed r.v. X_{i} with with $p_{i}=P\left(X_{i}=1\right)$:

$$
X_{i}=\left\{\begin{array}{cc}
1 & \text { bond } i \text { defaults } \\
0 & \text { otherwise }
\end{array}\right.
$$

Total loss at time $T: L=\sum_{i=1}^{n} X_{i} \cdot L G D_{i}=\sum_{i=1}^{n} X_{i}\left(1-\lambda_{i}\right) L_{i}$.
L is a r.v. and its distribution depends from the c.d.f. of $\left(X_{1}, \ldots, X_{n}, \lambda_{1}, \ldots, \lambda_{n}\right)^{T} \mathrm{ab}$.

The simplest model

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=p$ for all i, for some $p \in(0,1)$.

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=p$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=p$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability.

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=p$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability. Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=p$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability.
Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.
$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right), S_{i} \in\{0,1, \ldots, m\}$, is a status vector representing the category assignment; $S_{i}=j \in\{1,2, \ldots, m\}$ means that obligor i belongs to category j

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=p$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability.
Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.
$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right), S_{i} \in\{0,1, \ldots, m\}$, is a status vector representing the category assignment; $S_{i}=j \in\{1,2, \ldots, m\}$ means that obligor i belongs to category j (e.g. categories could be the rating classes).

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=p$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability.
Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.
$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right), S_{i} \in\{0,1, \ldots, m\}$, is a status vector representing the category assignment; $S_{i}=j \in\{1,2, \ldots, m\}$ means that obligor i belongs to category j (e.g. categories could be the rating classes). $S_{i}=0$ corresponds to default.

The simplest model

- $L_{i}=L_{1}, \forall i$
- recovery rates are deterministic and $\lambda_{i}=\lambda_{1}, \forall i$
- X_{i} are i.i.d. with $p_{i}=p$ for all i, for some $p \in(0,1)$.

Then we have $L=L G D_{1} \cdot N$ with $N=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, p)$.

Models with latent variables

The obligors (bonds) are partitioned into $m+1$ homogeneous categories such that all obligors of a group have the same default probability.
Historical data about the number of defaulting obligors of a certain category are used to obtain an estimator for the default probability of that category.
$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right), S_{i} \in\{0,1, \ldots, m\}$, is a status vector representing the category assignment; $S_{i}=j \in\{1,2, \ldots, m\}$ means that obligor i belongs to category j (e.g. categories could be the rating classes). $S_{i}=0$ corresponds to default.
Then we have $X_{i}= \begin{cases}0 & S_{i} \neq 0 \\ 1 & S_{i}=0\end{cases}$

Models with latent variables (contd.)

Models with latent variables (contd.)

$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)^{T}$ is modelled by means of latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$, e.g. Y_{i} could be the value of the assets of obligor i

Models with latent variables (contd.)

$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)^{T}$ is modelled by means of latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$, e.g. Y_{i} could be the value of the assets of obligor i (firm value models).

Models with latent variables (contd.)

$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)^{T}$ is modelled by means of latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$, e.g. Y_{i} could be the value of the assets of obligor i (firm value models).
Let $d_{i j}, i=1,2, \ldots, n, j=0,1, \ldots, m+1$ be threshold values such that $d_{i, 0}=-\infty$ und $d_{i, m+1}=\infty$ and $S_{i}=j \Longleftrightarrow Y_{i} \in\left(d_{i, j}, d_{i, j+1}\right]$.

Models with latent variables (contd.)

$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)^{T}$ is modelled by means of latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$, e.g. Y_{i} could be the value of the assets of obligor i (firm value models).
Let $d_{i j}, i=1,2, \ldots, n, j=0,1, \ldots, m+1$ be threshold values such that $d_{i, 0}=-\infty$ und $d_{i, m+1}=\infty$ and $S_{i}=j \Longleftrightarrow Y_{i} \in\left(d_{i, j}, d_{i, j+1}\right]$.

Let F_{i} be the distribution function of Y_{i}. The probability of default for obligor i is $p_{i}=F_{i}\left(d_{i, 1}\right)$.

Models with latent variables (contd.)

$S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)^{T}$ is modelled by means of latent variables
$Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$, e.g. Y_{i} could be the value of the assets of obligor
i (firm value models).
Let $d_{i j}, i=1,2, \ldots, n, j=0,1, \ldots, m+1$ be threshold values such that $d_{i, 0}=-\infty$ und $d_{i, m+1}=\infty$ and $S_{i}=j \Longleftrightarrow Y_{i} \in\left(d_{i, j}, d_{i, j+1}\right]$.

Let F_{i} be the distribution function of Y_{i}. The probability of default for obligor i is $p_{i}=F_{i}\left(d_{i, 1}\right)$.
The probability that the fisrt k obligors default:

$$
\begin{gather*}
p_{1,2, \ldots, k}:=P\left(Y_{1} \leq d_{1,1}, Y_{2} \leq d_{2,1}, \ldots, Y_{k} \leq d_{k, 1}\right) \\
=C\left(F_{1}\left(d_{1,1}\right), F_{2}\left(d_{2,1}\right), \ldots, F_{k}\left(d_{k, 1}\right), 1,1, \ldots, 1\right)=C\left(p_{1}, p_{2}, \ldots, p_{k}, 1,\right.
\end{gather*}
$$

Thus the totalt defalut probability depends essentially on the copula C of $\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$.

The KMV model (see www.moodysanalytics.com)

The KMV model (see www.moodysanalytics.com)
The status variables $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ can only take two values 0 or 1 , i.e. $m=1$.

The KMV model (see www.moodysanalytics.com)
The status variables $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ can only take two values 0 or 1 , i.e. $m=1$.

The latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$ depend on the value of the assets of the obligors as follows.

The KMV model (see www.moodysanalytics.com)

The status variables $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ can only take two values 0 or 1 , i.e. $m=1$.

The latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$ depend on the value of the assets of the obligors as follows.

Merton's model

The balance sheet of each firm consists of assets and liabilities. The latter are devided in debt and equities.

The KMV model (see www.moodysanalytics.com)

The status variables $S=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ can only take two values 0 or 1 , i.e. $m=1$.

The latent variables $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}$ depend on the value of the assets of the obligors as follows.

Merton's model

The balance sheet of each firm consists of assets and liabilities. The latter are devided in debt and equities.
Notations:
$V_{A, i}(T)$: value of assets of firm i at time point T
$K_{i}:=K_{i}(T)$: value of the debt of firm i at time point T
$V_{E, i}(T)$: value of equity of firm i at time point T
Assumption: future asset value is modelled by a geometric Brownian motion

The KMV model (contd.)

The KMV model (contd.)
$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$,

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a standard Brownian motion (or equivalently a Wiener process).

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with $\mu=\ln V_{A, i}(t)+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)$ and $\sigma^{2}=\sigma_{A, i}^{2}(T-t)$.

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with
$\mu=\ln V_{A, i}(t)+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)$ and $\sigma^{2}=\sigma_{A, i}^{2}(T-t)$.
Further $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)$ holds.

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with
$\mu=\ln V_{A, i}(t)+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)$ and $\sigma^{2}=\sigma_{A, i}^{2}(T-t)$.
Further $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)$ holds.
Set $Y_{i}=\frac{W_{i}(T)-W_{i}(t)}{\sqrt{T-t}} \sim N(0,1)$.

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with
$\mu=\ln V_{A, i}(t)+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)$ and $\sigma^{2}=\sigma_{A, i}^{2}(T-t)$.
Further $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)$ holds.
Set $Y_{i}=\frac{W_{i}(T)-W_{i}(t)}{\sqrt{T-t}} \sim N(0,1)$.
Then we get: $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)=I_{\left(-\infty,-D D_{i}\right)}\left(Y_{i}\right)$ where
$D D_{i}=\frac{\ln V_{A, i}(t)-\ln K_{i}+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)}{\sigma_{A, i} \sqrt{T-t}}$

The KMV model (contd.)

$V_{A, i}(T)=V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sigma_{A, i}\left(W_{i}(T)-W_{i}(t)\right)\right\}$, where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}$ is the volatility and $\left(W_{i}(t): 0 \leq t \leq T\right)$ is a standard Brownian motion (or equivalently a Wiener process).
Hence $\left(W_{i}(T)-W_{i}(t)\right) \sim N(0, T-t)$ and $\ln V_{A, i}(T) \sim N\left(\mu, \sigma^{2}\right)$ with
$\mu=\ln V_{A, i}(t)+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)$ and $\sigma^{2}=\sigma_{A, i}^{2}(T-t)$.
Further $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)$ holds.
Set $Y_{i}=\frac{W_{i}(T)-W_{i}(t)}{\sqrt{T-t}} \sim N(0,1)$.
Then we get: $X_{i}=I_{\left(-\infty, K_{i}\right)}\left(V_{A, i}(T)\right)=I_{\left(-\infty,-D D_{i}\right)}\left(Y_{i}\right)$ where
$D D_{i}=\frac{\ln V_{A, i}(t)-\ln K_{i}+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)}{\sigma_{A, i} \sqrt{T-t}}$
$D D_{i}$ is called distance-to-default.

The KMV model (contd.)

The KMV model (contd.)

Computation of the "distance to default"

The KMV model (contd.)

Computation of the "distance to default" $V_{A, i}(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.

The KMV model (contd.)

Computation of the "distance to default"
$V_{A, i}(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.
Difficulty: $V_{A, i}(t)$ can not be observed directly.

The KMV model (contd.)

Computation of the "distance to default"
$V_{A, i}(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.
Difficulty: $V_{A, i}(t)$ can not be observed directly.
However $V_{E, i}(t)$ can be observed by looking at the market stock prices.

The KMV model (contd.)

Computation of the "distance to default"
$V_{A, i}(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.
Difficulty: $V_{A, i}(t)$ can not be observed directly.
However $V_{E, i}(t)$ can be observed by looking at the market stock prices.
KMVs viewpoint: the equity holders have the right, but not the obligation, to pay off the holders of the other liabilities and take over the remaining assets of the firm.

The KMV model (contd.)

Computation of the "distance to default"
$V_{A, i}(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.
Difficulty: $V_{A, i}(t)$ can not be observed directly.
However $V_{E, i}(t)$ can be observed by looking at the market stock prices.
KMVs viewpoint: the equity holders have the right, but not the obligation, to pay off the holders of the other liabilities and take over the remaining assets of the firm.
This can be seen as a call option on the firms assets with a strike price equal to the book value of the firms liabilities.

The KMV model (contd.)

Computation of the "distance to default"
$V_{A, i}(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.
Difficulty: $V_{A, i}(t)$ can not be observed directly.
However $V_{E, i}(t)$ can be observed by looking at the market stock prices.
KMVs viewpoint: the equity holders have the right, but not the obligation, to pay off the holders of the other liabilities and take over the remaining assets of the firm.
This can be seen as a call option on the firms assets with a strike price equal to the book value of the firms liabilities.
Thus $V_{E, i}(T)=\max \left\{V_{A, i}(T)-K_{i}, 0\right\}$.

The KMV model (contd.)

Computation of the "distance to default"
$V_{A, i}(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.
Difficulty: $V_{A, i}(t)$ can not be observed directly.
However $V_{E, i}(t)$ can be observed by looking at the market stock prices.
KMVs viewpoint: the equity holders have the right, but not the obligation, to pay off the holders of the other liabilities and take over the remaining assets of the firm.
This can be seen as a call option on the firms assets with a strike price equal to the book value of the firms liabilities.
Thus $V_{E, i}(T)=\max \left\{V_{A, i}(T)-K_{i}, 0\right\}$.
The Black-Scholes formula implies (option price theory):

The KMV model (contd.)

Computation of the "distance to default"
$V_{A, i}(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.
Difficulty: $V_{A, i}(t)$ can not be observed directly.
However $V_{E, i}(t)$ can be observed by looking at the market stock prices.
KMVs viewpoint: the equity holders have the right, but not the obligation, to pay off the holders of the other liabilities and take over the remaining assets of the firm.
This can be seen as a call option on the firms assets with a strike price equal to the book value of the firms liabilities.
Thus $V_{E, i}(T)=\max \left\{V_{A, i}(T)-K_{i}, 0\right\}$.
The Black-Scholes formula implies (option price theory):
$V_{E, i}(t)=C\left(V_{A, i}(t), r, \sigma_{A, i}\right)=V_{A, i}(t) \phi\left(e_{1}\right)-K_{i} e^{-r(T-t)} \phi\left(e_{2}\right)$,

The KMV model (contd.)

Computation of the "distance to default"

$V_{A, i}(t), \mu_{A, i}$ and $\sigma_{A, i}$ are needed.
Difficulty: $V_{A, i}(t)$ can not be observed directly.
However $V_{E, i}(t)$ can be observed by looking at the market stock prices.
KMVs viewpoint: the equity holders have the right, but not the obligation, to pay off the holders of the other liabilities and take over the remaining assets of the firm.
This can be seen as a call option on the firms assets with a strike price equal to the book value of the firms liabilities.
Thus $V_{E, i}(T)=\max \left\{V_{A, i}(T)-K_{i}, 0\right\}$.
The Black-Scholes formula implies (option price theory):
$V_{E, i}(t)=C\left(V_{A, i}(t), r, \sigma_{A, i}\right)=V_{A, i}(t) \phi\left(e_{1}\right)-K_{i} e^{-r(T-t)} \phi\left(e_{2}\right)$, where
$e_{1}=\frac{\ln \left(V_{A, i}(t)-\ln K_{i}+\left(r+\sigma_{A, i}^{2} / 2\right)(T-t)\right.}{\sigma_{A, i}(T-t)}, e_{2}=e_{1}-\sigma_{A, i}(T-t)$,
ϕ is the the standard normal distribution function and r is the risk free interest rate.

Computation of the "distance to default" (contd.)

Computation of the "distance to default" (contd.)

The KMV model also postulates
$\sigma_{E, i}=g\left(V_{A, i}(t), \sigma_{A, i}, r\right)$, where g is some suitably selected proprietary function.

Computation of the "distance to default" (contd.)

The KMV model also postulates
$\sigma_{E, i}=g\left(V_{A, i}(t), \sigma_{A, i}, r\right)$, where g is some suitably selected proprietary function.
$V_{E, i}(t)$ and $\sigma_{E, i}$ are estimated based on historical data and the system of equalities below is solved w.r.t. $V_{A, i}(t)$ and $\sigma_{A, i}$:

Computation of the "distance to default" (contd.)

The KMV model also postulates
$\sigma_{E, i}=g\left(V_{A, i}(t), \sigma_{A, i}, r\right)$, where g is some suitably selected proprietary function.
$V_{E, i}(t)$ and $\sigma_{E, i}$ are estimated based on historical data and the system of equalities below is solved w.r.t. $V_{A, i}(t)$ and $\sigma_{A, i}$:

$$
\begin{aligned}
& V_{E, i}(t)=C\left(V_{A, i}(t), r, \sigma_{A, i}\right) \\
& \sigma_{E, i}=g\left(V_{A, i}(t), \sigma_{A, i}, r\right)
\end{aligned}
$$

Computation of the "distance to default" (contd.)

The KMV model also postulates
$\sigma_{E, i}=g\left(V_{A, i}(t), \sigma_{A, i}, r\right)$, where g is some suitably selected proprietary function.
$V_{E, i}(t)$ and $\sigma_{E, i}$ are estimated based on historical data and the system of equalities below is solved w.r.t. $V_{A, i}(t)$ and $\sigma_{A, i}$:
$V_{E, i}(t)=C\left(V_{A, i}(t), r, \sigma_{A, i}\right)$
$\sigma_{E, i}=g\left(V_{A, i}(t), \sigma_{A, i}, r\right)$
The values obtained for $V_{A, i}(t)$ and $\sigma_{A, i}$ are used to compute $D D_{i}$:
$D D_{i}=\frac{\ln V_{A, i}(t)-\ln K_{i}+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)}{\sigma_{A, i} \sqrt{T-t}}$.

Computation of the "distance to default" (contd.)

The KMV model also postulates
$\sigma_{E, i}=g\left(V_{A, i}(t), \sigma_{A, i}, r\right)$, where g is some suitably selected proprietary function.
$V_{E, i}(t)$ and $\sigma_{E, i}$ are estimated based on historical data and the system of equalities below is solved w.r.t. $V_{A, i}(t)$ and $\sigma_{A, i}$:
$V_{E, i}(t)=C\left(V_{A, i}(t), r, \sigma_{A, i}\right)$
$\sigma_{E, i}=g\left(V_{A, i}(t), \sigma_{A, i}, r\right)$
The values obtained for $V_{A, i}(t)$ and $\sigma_{A, i}$ are used to compute $D D_{i}$:
$D D_{i}=\frac{\ln V_{A, i}(t)-\ln K_{i}+\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)}{\sigma_{A, i} \sqrt{T-t}}$.
Then $P\left(V_{A, i}(T)<K_{i}\right)=P\left(Y_{i}<-D D_{i}\right)$ and in the general setup of the latent variable model with $m=1$ we have $d_{i 1}=-D D_{i}$.

The expected default frequency (EDF)

The expected default frequency (EDF)

In the KMV model the default probability is not computed by setting
$p_{i}:=P\left(Y_{i}<-D D_{i}\right)$.

The expected default frequency (EDF)

In the KMV model the default probability is not computed by setting $p_{i}:=P\left(Y_{i}<-D D_{i}\right)$.
Alternative: historical data are used to identify companies which at some stage in their history had the same distance to default $D D_{i}$.

The expected default frequency (EDF)

In the KMV model the default probability is not computed by setting $p_{i}:=P\left(Y_{i}<-D D_{i}\right)$. Alternative: historical data are used to identify companies which at some stage in their history had the same distance to default $D D_{i}$.
Then the observed default frequency is used as an estimator for the default probability p_{i}.

The expected default frequency (EDF)

In the KMV model the default probability is not computed by setting $p_{i}:=P\left(Y_{i}<-D D_{i}\right)$.
Alternative: historical data are used to identify companies which at some stage in their history had the same distance to default $D D_{i}$.
Then the observed default frequency is used as an estimator for the default probability p_{i}. This estimator is called expected default frequency, (EDF).

The expected default frequency (EDF)

In the KMV model the default probability is not computed by setting $p_{i}:=P\left(Y_{i}<-D D_{i}\right)$.
Alternative: historical data are used to identify companies which at some stage in their history had the same distance to default $D D_{i}$.
Then the observed default frequency is used as an estimator for the default probability p_{i}. This estimator is called expected default frequency, (EDF).
Summary of the univariate KMV model to compute the default probability of a company:

- Estimate the asset value $V_{A, i}$ and the volatilty $\sigma_{A, i}$ by using observations of the market value and the volatility of equity $V_{E, i}$, $\sigma_{E, i}$, the book of liabilities K_{i}, and by solving the system of equations above.
- Compute the distance-to-default $D D_{i}$ by means of the corresponding formula.
- Estimate the default probability p_{i} in terms of the empirical distribution which relates the distance to default with the expected default frequency.

The multivariate KMV model: computation of multivariate default probabilities for n debtors

The multivariate KMV model: computation of multivariate default probabilities for n debtors
Let $W j(t)$ be independent standard Brownian motions for $0 \leq t \leq T$, $j=1,2, \ldots, n$.

The multivariate KMV model: computation of multivariate default probabilities for n debtors
Let $W j(t)$ be independent standard Brownian motions for $0 \leq t \leq T$, $j=1,2, \ldots, n$.
Basic model: $V_{A, i}(T)=$
$V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sum_{j=1}^{n} \sigma_{A, i, j}\left(W_{j}(T)-W_{j}(t)\right)\right\}$,
where

The multivariate KMV model: computation of multivariate default probabilities for n debtors

Let $W j(t)$ be independent standard Brownian motions for $0 \leq t \leq T$, $j=1,2, \ldots, n$.
Basic model: $V_{A, i}(T)=$
$V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sum_{j=1}^{n} \sigma_{A, i, j}\left(W_{j}(T)-W_{j}(t)\right)\right\}$,
where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}^{2}=\sum_{j=1}^{n} \sigma_{A, i, j}^{2}$ is the volatility, and $\sigma_{A, i, j}$ quantifies the impact of the j th Brownian motion on the asset value of firm i, $i, j \in\{1,2, \ldots, n\}$.

The multivariate KMV model: computation of

 multivariate default probabilities for n debtorsLet $W j(t)$ be independent standard Brownian motions for $0 \leq t \leq T$, $j=1,2, \ldots, n$.
Basic model: $V_{A, i}(T)=$
$V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sum_{j=1}^{n} \sigma_{A, i, j}\left(W_{j}(T)-W_{j}(t)\right)\right\}$,
where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}^{2}=\sum_{j=1}^{n} \sigma_{A, i, j}^{2}$ is the volatility, and $\sigma_{A, i, j}$ quantifies the impact of the j th Brownian motion on the asset value of firm i, $i, j \in\{1,2, \ldots, n\}$.
Set $Y_{i}:=\frac{\sum_{j=1}^{m} \sigma_{A, i, j}\left(W_{j}(T)-W_{j}(t)\right)}{\sigma_{A, i} \sqrt{T-t}}$. Then $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right) \sim N_{n}(0, \Sigma)$,

The multivariate KMV model: computation of

 multivariate default probabilities for n debtorsLet $W j(t)$ be independent standard Brownian motions for $0 \leq t \leq T$, $j=1,2, \ldots, n$.
Basic model: $V_{A, i}(T)=$
$V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sum_{j=1}^{n} \sigma_{A, i, j}\left(W_{j}(T)-W_{j}(t)\right)\right\}$,
where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}^{2}=\sum_{j=1}^{n} \sigma_{A, i, j}^{2}$ is the volatility, and $\sigma_{A, i, j}$ quantifies the impact of the j th Brownian motion on the asset value of firm i, $i, j \in\{1,2, \ldots, n\}$.
Set $Y_{i}:=\frac{\sum_{j=1}^{m} \sigma_{A, i, j}\left(W_{j}(T)-W_{j}(t)\right)}{\sigma_{A, i} \sqrt{T-t}}$. Then $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right) \sim N_{n}(0, \Sigma)$, where $\Sigma=\left(\sigma_{i j}\right) \in \mathbb{R}^{n \times n}$ and $\sigma_{i j}:=\frac{\sum_{k=1}^{n} \sigma_{A, i, k} \sigma_{A, j, k}}{\sigma_{A, i} \sigma_{A, j}}$.

The multivariate KMV model: computation of multivariate default probabilities for n debtors

Let $W j(t)$ be independent standard Brownian motions for $0 \leq t \leq T$, $j=1,2, \ldots, n$.
Basic model: $V_{A, i}(T)=$
$V_{A, i}(t) \exp \left\{\left(\mu_{A, i}-\frac{\sigma_{A, i}^{2}}{2}\right)(T-t)+\sum_{j=1}^{n} \sigma_{A, i, j}\left(W_{j}(T)-W_{j}(t)\right)\right\}$,
where
$\mu_{A, i}$ is the drift, $\sigma_{A, i}^{2}=\sum_{j=1}^{n} \sigma_{A, i, j}^{2}$ is the volatility, and $\sigma_{A, i, j}$ quantifies the impact of the j th Brownian motion on the asset value of firm i, $i, j \in\{1,2, \ldots, n\}$.
Set $Y_{i}:=\frac{\sum_{j=1}^{m} \sigma_{A, i, j}\left(W_{j}(T)-W_{j}(t)\right)}{\sigma_{A, i} \sqrt{T-t}}$. Then $Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right) \sim N_{n}(0, \Sigma)$, where $\Sigma=\left(\sigma_{i j}\right) \in \mathbb{R}^{n \times n}$ and $\sigma_{i j}:=\frac{\sum_{k=1}^{n} \sigma_{A, i, k} \sigma_{A, j, k}}{\sigma_{A, i} \sigma_{A, j}}$.
We get $V_{A, i}(T)<K_{i} \Longleftrightarrow Y_{i}<-D D_{i}$ for all $i \in\{1,2, \ldots, n\}$ with

$$
D D_{i}=\frac{\ln V_{A, i}(t)-\ln K_{i}+\left(\frac{-\sigma_{A, i}^{2}}{2}+\mu_{A, i}\right)(T-t)}{\sigma_{A, i} \sqrt{T-t}} .
$$

The multivariate KMV model (contd.)

The multivariate KMV model (contd.)

The probability that the k first firms default:

$$
\begin{aligned}
& P\left(X_{1}=1, X_{2}=1, \ldots, X_{k}=1\right)=P\left(Y_{1}<-D D_{1}, \ldots, Y_{k}<-D D_{k}\right) \\
& =C_{\Sigma}^{G a}\left(\phi\left(-D D_{1}\right), \ldots, \phi\left(-D D_{k}\right), 1, \ldots, 1\right),
\end{aligned}
$$

The multivariate KMV model (contd.)

The probability that the k first firms default:
$P\left(X_{1}=1, X_{2}=1, \ldots, X_{k}=1\right)=P\left(Y_{1}<-D D_{1}, \ldots, Y_{k}<-D D_{k}\right)$
$=C_{\Sigma}^{G a}\left(\phi\left(-D D_{1}\right), \ldots, \phi\left(-D D_{k}\right), 1, \ldots, 1\right)$,
where $C_{\Sigma}^{G a}$ is the copula of a n-variate normal distribution with covariance matrix Σ.

The multivariate KMV model (contd.)

The probability that the k first firms default:
$P\left(X_{1}=1, X_{2}=1, \ldots, X_{k}=1\right)=P\left(Y_{1}<-D D_{1}, \ldots, Y_{k}<-D D_{k}\right)$
$=C_{\Sigma}^{G a}\left(\phi\left(-D D_{1}\right), \ldots, \phi\left(-D D_{k}\right), 1, \ldots, 1\right)$,
where $C_{\Sigma}^{G a}$ is the copula of a n-variate normal distribution with covariance matrix Σ.
Joint default frequency:
$J D F_{1,2, \ldots, k}=C_{\Sigma}^{G a}\left(E D F_{1}, E D F_{2}, \ldots, E D F_{k}, 1, \ldots, 1\right)$,
where $E D F_{i}$ is the default frequency for firm $i, i=1,2, \ldots, k$.

Estimation of covariances/correlations $\sigma_{A, i, j}$

Estimation of covariances/correlations $\sigma_{A, i, j}$

Difficulties:

- The number n of debtors is typically quite large
- relatively few historical data available
- if n is large, then the pairwise estimated correlations coefficients do not build a positive correlation matrix, in general.

Estimation of covariances/correlations $\sigma_{A, i, j}$

Difficulties:

- The number n of debtors is typically quite large
- relatively few historical data available
- if n is large, then the pairwise estimated correlations coefficients do not build a positive correlation matrix, in general.

Possible approach:
Factor model for the latent variables in which the asset value of a company depends on certain common factors (macro-economical, global, regional, sector-based or country-based factors) and a company specific factor.

Estimation of covariances/correlations $\sigma_{A, i, j}$

Difficulties:

- The number n of debtors is typically quite large
- relatively few historical data available
- if n is large, then the pairwise estimated correlations coefficients do not build a positive correlation matrix, in general.

Possible approach:
Factor model for the latent variables in which the asset value of a company depends on certain common factors (macro-economical, global, regional, sector-based or country-based factors) and a company specific factor.
$Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}=A Z+B U$ where
$Z=\left(Z_{1}, \ldots, Z_{k}\right)^{T} \sim N_{k}(0, \Lambda)$ are the k common factors,
$U=\left(U_{1}, \ldots, U_{n}\right)^{T} \sim N_{n}(0, I)$ are the company specific factors such that Z and U are independent, and the constant matrices $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times k}$, $B=\operatorname{diag}\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{R}^{n \times n}$ are model parameters.

Estimation of covariances/correlations $\sigma_{A, i, j}$

Difficulties:

- The number n of debtors is typically quite large
- relatively few historical data available
- if n is large, then the pairwise estimated correlations coefficients do not build a positive correlation matrix, in general.

Possible approach:
Factor model for the latent variables in which the asset value of a company depends on certain common factors (macro-economical, global, regional, sector-based or country-based factors) and a company specific factor.
$Y=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)^{T}=A Z+B U$ where
$Z=\left(Z_{1}, \ldots, Z_{k}\right)^{T} \sim N_{k}(0, \Lambda)$ are the k common factors,
$U=\left(U_{1}, \ldots, U_{n}\right)^{T} \sim N_{n}(0, I)$ are the company specific factors such that Z and U are independent, and the constant matrices $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times k}$, $B=\operatorname{diag}\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{R}^{n \times n}$ are model parameters.
Then we have $\operatorname{cov}(Y)=A \wedge A^{T}+D$ where $D=\operatorname{diag}\left(b_{1}^{2}, \ldots, b_{n}^{2}\right) \in \mathbb{R}^{n \times n}$.

Migration based models: Credit Metrics

Migration based models: Credit Metrics

It was developed by J.P.Morgan, see also MSCI (https://www.msci.com/)

Migration based models: Credit Metrics

It was developed by J.P.Morgan, see also MSCI
(https://www.msci.com/)
It is primarily used fo the evaluation of bond portfolios (Siehe Crouhy et al. (2000)) and is based on a rating system (eg. Moody's or Standard and Poor's).

Migration based models: Credit Metrics

It was developed by J.P.Morgan, see also MSCI
(https://www.msci.com/)
It is primarily used fo the evaluation of bond portfolios (Siehe Crouhy et al. (2000)) and is based on a rating system (eg. Moody's or Standard and Poor's).
It considers the changes of the portfolio value due to changes on the corresponding rating categories of the assets.

Migration based models: Credit Metrics

It was developed by J.P.Morgan, see also MSCI
(https://www.msci.com/)
It is primarily used fo the evaluation of bond portfolios (Siehe Crouhy et al. (2000)) and is based on a rating system (eg. Moody's or Standard and Poor's).
It considers the changes of the portfolio value due to changes on the corresponding rating categories of the assets.
Let P be a portfolio consisting of n credits with a fixed holding duration (eg. 1 year). Let S_{i} be the status variable for debtor i, where the states are $0,1, \ldots, m$ and $S_{i}=0$ corresponds to default.

Migration based models: Credit Metrics

It was developed by J.P.Morgan, see also MSCI
(https://www.msci.com/)
It is primarily used fo the evaluation of bond portfolios (Siehe Crouhy et al. (2000)) and is based on a rating system (eg. Moody's or Standard and Poor's).
It considers the changes of the portfolio value due to changes on the corresponding rating categories of the assets.
Let P be a portfolio consisting of n credits with a fixed holding duration (eg. 1 year). Let S_{i} be the status variable for debtor i, where the states are $0,1, \ldots, m$ and $S_{i}=0$ corresponds to default.
Example: Rating system of Standard and Poor's $m=7 ; S_{i}=0$ means default; $S_{i}=1$ or $C C C ; S_{i}=2$ or $B ; S_{i}=3$ or $B B$;
$S_{i}=4$ or $B B B ; S_{i}=5$ or $A ; S_{i}=6$ or $A A ; S_{i}=7$ or $A A A$.

Migration based models: Credit Metrics (contd.)

Migration based models: Credit Metrics (contd.)

For each debtor the dynamics of the status variable is modelled by means of a Markov chain with status set $\{0,1, \ldots, m\}$ and transition matrix P.

Migration based models: Credit Metrics (contd.)

For each debtor the dynamics of the status variable is modelled by means of a Markov chain with status set $\{0,1, \ldots, m\}$ and transition matrix P. The transition probabilities are computed based on historical data: e.g.

Migration based models: Credit Metrics (contd.)

For each debtor the dynamics of the status variable is modelled by means of a Markov chain with status set $\{0,1, \ldots, m\}$ and transition matrix P. The transition probabilities are computed based on historical data: e.g.

Original	state category at the end of the year							
state category	AAA	AA	A	BBB	BB	B	CCC	default
AAA	90.81	8.33	0.68	0.06	0.12	0	0	0
AA	0.70	90.65	7.79	0.64	0.06	0.14	0.02	0
A	0.09	2.27	91.05	5.52	0.74	0.26	0.01	0.06
BBB	0.02	0.33	5.95	86.93	5.30	1.17	0.12	0.18
BB	0.03	0.14	0.67	7.73	80.53	8.84	1.00	1.06
B	0	0.11	0.24	0.43	6.48	83.46	4.07	5.20
CCC	0.22	0	0.22	1.30	2.38	11.24	64.86	19.79

Migration based models: Credit Metrics (contd.)

For each debtor the dynamics of the status variable is modelled by means of a Markov chain with status set $\{0,1, \ldots, m\}$ and transition matrix P. The transition probabilities are computed based on historical data: e.g.

Original	state category at the end of the year							
state category	AAA	AA	A	BBB	BB	B	CCC	default
AAA	90.81	8.33	0.68	0.06	0.12	0	0	0
AA	0.70	90.65	7.79	0.64	0.06	0.14	0.02	0
A	0.09	2.27	91.05	5.52	0.74	0.26	0.01	0.06
BBB	0.02	0.33	5.95	86.93	5.30	1.17	0.12	0.18
BB	0.03	0.14	0.67	7.73	80.53	8.84	1.00	1.06
B	0	0.11	0.24	0.43	6.48	83.46	4.07	5.20
CCC	0.22	0	0.22	1.30	2.38	11.24	64.86	19.79

Recovery rates

In case of default the recovery rate depends on the status category of the defaulting debtor (prior to default). The mean and the standard deviation of the recovery rate are computed based on the historical data observed over time within each state category.

Evaluation of bonds if the status category changes

Evaluation of bonds if the status category changes

Example: Consider a BBB bond with maturity 5 years, a nominal value of 100 units and a coupon of 6% each year.

Evaluation of bonds if the status category changes

Example: Consider a BBB bond with maturity 5 years, a nominal value of 100 units and a coupon of 6% each year.
The forward yield curves for each status category are given as follows (in \%):

Status	Year 1	Year 2	Year 3	Year 4
AAA	3.60	4.17	4.73	5.12
AA	3.65	4.22	4.78	5.17
A	3.73	4.32	4.93	5.32
BBB	4.10	4.67	5.25	5.63
BB	6.05	7.02	8.03	8.52
CCC	15.05	15.02	14.03	13.52

Evaluation of bonds if the status category changes

Example: Consider a BBB bond with maturity 5 years, a nominal value of 100 units and a coupon of 6% each year.
The forward yield curves for each status category are given as follows (in \%):

Status	Year 1	Year 2	Year 3	Year 4
AAA	3.60	4.17	4.73	5.12
AA	3.65	4.22	4.78	5.17
A	3.73	4.32	4.93	5.32
BBB	4.10	4.67	5.25	5.63
BB	6.05	7.02	8.03	8.52
CCC	15.05	15.02	14.03	13.52

The bond pays 6 units at the end of the 4 years 1, 2, 3, 4 and 106 unit at the end of year 5 .

Evaluation of bonds if the status category changes

Example: Consider a BBB bond with maturity 5 years, a nominal value of 100 units and a coupon of 6% each year.
The forward yield curves for each status category are given as follows (in \%):

Status	Year 1	Year 2	Year 3	Year 4
AAA	3.60	4.17	4.73	5.12
AA	3.65	4.22	4.78	5.17
A	3.73	4.32	4.93	5.32
BBB	4.10	4.67	5.25	5.63
BB	6.05	7.02	8.03	8.52
CCC	15.05	15.02	14.03	13.52

The bond pays 6 units at the end of the 4 years 1, 2, 3, 4 and 106 unit at the end of year 5 .
Assumption: At the end of the first year the bond is rated as an A bond.
The value at the end of the first year:
$V=6+\frac{6}{1+3,73 \%}+\frac{6}{(1+4,32 \%)^{2}}+\frac{6}{(1+4,93 \%)^{3}}+\frac{106}{(1+5,32 \%)^{4}}=108.64$

Evaluation of bonds if the status category changes (contd.)

Evaluation of bonds if the status category changes (contd.)

Example (contd.)

Analogous evaluation of the bond for other status category changes.

Evaluation of bonds if the status category changes (contd.)

Example (contd.)

Analogous evaluation of the bond for other status category changes.
Assumption: recovery rate in case of default is 51.13%.

Evaluation of bonds if the status category changes (contd.)

Example (contd.)

Analogous evaluation of the bond for other status category changes.
Assumption: recovery rate in case of default is 51.13%.

Status category at the end of the first year	value
AAA	109.35
AA	109.17
A	108.64
BBB	107.53
BB	102.01
B	98.09
CCC	83.63
Default	51.13

Evaluation of bonds if the status category changes (contd.)

Example (contd.)

Analogous evaluation of the bond for other status category changes.
Assumption: recovery rate in case of default is 51.13%.

Status category at the end of the first year	value
AAA	109.35
AA	109.17
A	108.64
BBB	107.53
BB	102.01
B	98.09
CCC	83.63
Default	51.13

Then use the transition probabilities of the Markov chain (estimated in terms of historical data) to compute the expected value of the bond at the end of the first year.

Value and risk of a bond portfolio in Credit Metrics

Value and risk of a bond portfolio in Credit Metrics
The dependencies between the status category changes of different bonds and the probabilities of simultaneous status category changes of bonds are modelled by means of the bond returns

Value and risk of a bond portfolio in Credit Metrics
The dependencies between the status category changes of different bonds and the probabilities of simultaneous status category changes of bonds are modelled by means of the bond returns
The return of bond i is modelled by a normal distribution Y_{i}.

Value and risk of a bond portfolio in Credit Metrics

The dependencies between the status category changes of different bonds and the probabilities of simultaneous status category changes of bonds are modelled by means of the bond returns
The return of bond i is modelled by a normal distribution Y_{i}.
Let $d_{\text {Def }}, d_{C C C}, \ldots, d_{A A A}=+\infty$ be thresholds which define the transitions probabilities of debtor i at the end of the current period as follows:
$P\left(S_{i}=0\right)=\phi\left(d_{D e f}\right), P\left(S_{i}=C C C\right)=\phi\left(d_{C C C}\right)-\phi\left(d_{\text {Def }}\right), \ldots$,
$P\left(S_{i}=A A A\right)=1-\phi(A A)$.

Value and risk of a bond portfolio in Credit Metrics

The dependencies between the status category changes of different bonds and the probabilities of simultaneous status category changes of bonds are modelled by means of the bond returns
The return of bond i is modelled by a normal distribution Y_{i}.
Let $d_{\text {Def }}, d_{C C C}, \ldots, d_{A A A}=+\infty$ be thresholds which define the transitions probabilities of debtor i at the end of the current period as follows:
$P\left(S_{i}=0\right)=\phi\left(d_{\text {Def }}\right), P\left(S_{i}=C C C\right)=\phi\left(d_{C C C}\right)-\phi\left(d_{\text {Def }}\right), \ldots$,
$P\left(S_{i}=A A A\right)=1-\phi(A A)$.
These thresholds can be estimated in terms of historical data.

Value and risk of a bond portfolio in Credit Metrics

The dependencies between the status category changes of different bonds and the probabilities of simultaneous status category changes of bonds are modelled by means of the bond returns
The return of bond i is modelled by a normal distribution Y_{i}.
Let $d_{\text {Def }}, d_{C C C}, \ldots, d_{A A A}=+\infty$ be thresholds which define the transitions probabilities of debtor i at the end of the current period as follows:
$P\left(S_{i}=0\right)=\phi\left(d_{D e f}\right), P\left(S_{i}=C C C\right)=\phi\left(d_{C C C}\right)-\phi\left(d_{D e f}\right), \ldots$,
$P\left(S_{i}=A A A\right)=1-\phi(A A)$.
These thresholds can be estimated in terms of historical data.
The return of a vector of bonds is modelled as a multivariate normal distribution with correlation matrix R estimated by means of factor models.

Value and risk of a bond portfolio in Credit Metrics

The dependencies between the status category changes of different bonds and the probabilities of simultaneous status category changes of bonds are modelled by means of the bond returns
The return of bond i is modelled by a normal distribution Y_{i}.
Let $d_{\text {Def }}, d_{C C C}, \ldots, d_{A A A}=+\infty$ be thresholds which define the transitions probabilities of debtor i at the end of the current period as follows:
$P\left(S_{i}=0\right)=\phi\left(d_{D e f}\right), P\left(S_{i}=C C C\right)=\phi\left(d_{C C C}\right)-\phi\left(d_{D e f}\right), \ldots$,
$P\left(S_{i}=A A A\right)=1-\phi(A A)$.
These thresholds can be estimated in terms of historical data.
The return of a vector of bonds is modelled as a multivariate normal distribution with correlation matrix R estimated by means of factor models.
Joint probabilities of status category changes, e.g.

$$
P\left(S_{1}=0, \ldots, S_{n}=3\right)=P\left(Y_{1} \leq d_{D e f}, \ldots, d_{B}<Y_{n} \leq d_{B B}\right)
$$

can be then computed by using the Gaussian copula $C_{n, R}^{G a}$ of $\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$.

Value and risk of a bond portfolio in Credit Metrics

The dependencies between the status category changes of different bonds and the probabilities of simultaneous status category changes of bonds are modelled by means of the bond returns
The return of bond i is modelled by a normal distribution Y_{i}.
Let $d_{\text {Def }}, d_{C C C}, \ldots, d_{A A A}=+\infty$ be thresholds which define the transitions probabilities of debtor i at the end of the current period as follows:
$P\left(S_{i}=0\right)=\phi\left(d_{D e f}\right), P\left(S_{i}=C C C\right)=\phi\left(d_{C C C}\right)-\phi\left(d_{D e f}\right), \ldots$,
$P\left(S_{i}=A A A\right)=1-\phi(A A)$.
These thresholds can be estimated in terms of historical data.
The return of a vector of bonds is modelled as a multivariate normal distribution with correlation matrix R estimated by means of factor models.
Joint probabilities of status category changes, e.g.

$$
P\left(S_{1}=0, \ldots, S_{n}=3\right)=P\left(Y_{1} \leq d_{D e f}, \ldots, d_{B}<Y_{n} \leq d_{B B}\right)
$$

can be then computed by using the Gaussian copula $C_{n, R}^{G a}$ of $\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$.
The risk measures ($\mathrm{VaR}, \mathrm{CVaR}$) of the bond portfolio, can be computed by simulation.

