
What is credit risk?

Citation from McNeil, Frey und Embrechts (2005):

Credit risk is the risk that the value of a portfolio changes due to
unexpected changes in the credit quality of issuers or trading partners.
This subsumes both losses due to defaults and losses caused by changes
in credit quality such as the downgrading of a counterparty in an internal
or external rating system.

Examples of finance instruments affected by credit risk

I bond portfolios

I OTC (“over the counter”) transactions

I trades with credit derivatives

I ...
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A generic model of credit risk

Let P be a portfolio of n risky bonds of nominal value Li , i = 1, 2, . . . , n,
respectively, set up at time T0.

pi : the probability that (the issuer of) bond i defaults until time T ,
T > T0

λi ∈ [0, 1]: “recovery rate” of bond i
1− λi : percentage of lost value of bond i in case of default until time T

The loss given default for bond i at time T : LGDi = (1− λi )Li
Model the default of bond i until time T by a Bernoulli distributed r.v. Xi

with with pi = P(Xi = 1):

Xi =

{
1 bond i defaults
0 otherwise

Total loss at time T : L =
∑n

i=1 Xi · LGDi =
∑n

i=1 Xi (1− λi )Li .

L is a r.v. and its distribution depends from the c.d.f. of
(X1, . . . ,Xn, λ1, . . . , λn)T ab.



A generic model of credit risk
Let P be a portfolio of n risky bonds of nominal value Li , i = 1, 2, . . . , n,
respectively, set up at time T0.

pi : the probability that (the issuer of) bond i defaults until time T ,
T > T0

λi ∈ [0, 1]: “recovery rate” of bond i
1− λi : percentage of lost value of bond i in case of default until time T

The loss given default for bond i at time T : LGDi = (1− λi )Li
Model the default of bond i until time T by a Bernoulli distributed r.v. Xi

with with pi = P(Xi = 1):

Xi =

{
1 bond i defaults
0 otherwise

Total loss at time T : L =
∑n

i=1 Xi · LGDi =
∑n

i=1 Xi (1− λi )Li .

L is a r.v. and its distribution depends from the c.d.f. of
(X1, . . . ,Xn, λ1, . . . , λn)T ab.



A generic model of credit risk
Let P be a portfolio of n risky bonds of nominal value Li , i = 1, 2, . . . , n,
respectively, set up at time T0.

pi : the probability that (the issuer of) bond i defaults until time T ,
T > T0

λi ∈ [0, 1]: “recovery rate” of bond i
1− λi : percentage of lost value of bond i in case of default until time T

The loss given default for bond i at time T : LGDi = (1− λi )Li
Model the default of bond i until time T by a Bernoulli distributed r.v. Xi

with with pi = P(Xi = 1):

Xi =

{
1 bond i defaults
0 otherwise

Total loss at time T : L =
∑n

i=1 Xi · LGDi =
∑n

i=1 Xi (1− λi )Li .

L is a r.v. and its distribution depends from the c.d.f. of
(X1, . . . ,Xn, λ1, . . . , λn)T ab.



A generic model of credit risk
Let P be a portfolio of n risky bonds of nominal value Li , i = 1, 2, . . . , n,
respectively, set up at time T0.

pi : the probability that (the issuer of) bond i defaults until time T ,
T > T0

λi ∈ [0, 1]: “recovery rate” of bond i
1− λi : percentage of lost value of bond i in case of default until time T

The loss given default for bond i at time T : LGDi = (1− λi )Li
Model the default of bond i until time T by a Bernoulli distributed r.v. Xi

with with pi = P(Xi = 1):

Xi =

{
1 bond i defaults
0 otherwise

Total loss at time T : L =
∑n

i=1 Xi · LGDi =
∑n

i=1 Xi (1− λi )Li .

L is a r.v. and its distribution depends from the c.d.f. of
(X1, . . . ,Xn, λ1, . . . , λn)T ab.



A generic model of credit risk
Let P be a portfolio of n risky bonds of nominal value Li , i = 1, 2, . . . , n,
respectively, set up at time T0.

pi : the probability that (the issuer of) bond i defaults until time T ,
T > T0

λi ∈ [0, 1]: “recovery rate” of bond i
1− λi : percentage of lost value of bond i in case of default until time T

The loss given default for bond i at time T : LGDi = (1− λi )Li

Model the default of bond i until time T by a Bernoulli distributed r.v. Xi

with with pi = P(Xi = 1):

Xi =

{
1 bond i defaults
0 otherwise

Total loss at time T : L =
∑n

i=1 Xi · LGDi =
∑n

i=1 Xi (1− λi )Li .

L is a r.v. and its distribution depends from the c.d.f. of
(X1, . . . ,Xn, λ1, . . . , λn)T ab.



A generic model of credit risk
Let P be a portfolio of n risky bonds of nominal value Li , i = 1, 2, . . . , n,
respectively, set up at time T0.

pi : the probability that (the issuer of) bond i defaults until time T ,
T > T0

λi ∈ [0, 1]: “recovery rate” of bond i
1− λi : percentage of lost value of bond i in case of default until time T

The loss given default for bond i at time T : LGDi = (1− λi )Li
Model the default of bond i until time T by a Bernoulli distributed r.v. Xi

with with pi = P(Xi = 1):

Xi =

{
1 bond i defaults
0 otherwise

Total loss at time T : L =
∑n

i=1 Xi · LGDi =
∑n

i=1 Xi (1− λi )Li .

L is a r.v. and its distribution depends from the c.d.f. of
(X1, . . . ,Xn, λ1, . . . , λn)T ab.



A generic model of credit risk
Let P be a portfolio of n risky bonds of nominal value Li , i = 1, 2, . . . , n,
respectively, set up at time T0.

pi : the probability that (the issuer of) bond i defaults until time T ,
T > T0

λi ∈ [0, 1]: “recovery rate” of bond i
1− λi : percentage of lost value of bond i in case of default until time T

The loss given default for bond i at time T : LGDi = (1− λi )Li
Model the default of bond i until time T by a Bernoulli distributed r.v. Xi

with with pi = P(Xi = 1):

Xi =

{
1 bond i defaults
0 otherwise

Total loss at time T : L =
∑n

i=1 Xi · LGDi =
∑n

i=1 Xi (1− λi )Li .

L is a r.v. and its distribution depends from the c.d.f. of
(X1, . . . ,Xn, λ1, . . . , λn)T ab.



A generic model of credit risk
Let P be a portfolio of n risky bonds of nominal value Li , i = 1, 2, . . . , n,
respectively, set up at time T0.

pi : the probability that (the issuer of) bond i defaults until time T ,
T > T0

λi ∈ [0, 1]: “recovery rate” of bond i
1− λi : percentage of lost value of bond i in case of default until time T

The loss given default for bond i at time T : LGDi = (1− λi )Li
Model the default of bond i until time T by a Bernoulli distributed r.v. Xi

with with pi = P(Xi = 1):

Xi =

{
1 bond i defaults
0 otherwise

Total loss at time T : L =
∑n

i=1 Xi · LGDi =
∑n

i=1 Xi (1− λi )Li .

L is a r.v. and its distribution depends from the c.d.f. of
(X1, . . . ,Xn, λ1, . . . , λn)T ab.



The simplest model

I Li = L1, ∀i
I recovery rates are deterministic and λi = λ1, ∀i
I Xi are i.i.d. with pi = p for all i , for some p ∈ (0, 1).

Then we have L = LGD1 · N with N =
∑n

i=1 Xi ∼ Binomial(n, p).

Models with latent variables
The obligors (bonds) are partitioned into m + 1 homogeneous categories
such that all obligors of a group have the same default probability.

Historical data about the number of defaulting obligors of a certain
category are used to obtain an estimator for the default probability of
that category.

S = (S1,S2, . . . ,Sn), Si ∈ {0, 1, . . . ,m}, is a status vector representing
the category assignment; Si = j ∈ {1, 2, . . . ,m} means that obligor i
belongs to category j (e.g. categories could be the rating classes).

Si = 0 corresponds to default.

Then we have Xi =

{
0 Si 6= 0
1 Si = 0
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Models with latent variables (contd.)

S = (S1,S2, . . . ,Sn)T is modelled by means of latent variables
Y = (Y1,Y2, . . . ,Yn)T , e.g. Yi could be the value of the assets of obligor
i (firm value models).

Let dij , i = 1, 2, . . . , n, j = 0, 1, . . . ,m + 1 be threshold values such that
di,0 = −∞ und di,m+1 =∞ and Si = j ⇐⇒ Yi ∈ (di,j , di,j+1].

Let Fi be the distribution function of Yi . The probability of default for
obligor i is pi = Fi (di,1).

The probability that the fisrt k obligors default:

p1,2,...,k := P(Y1 ≤ d1,1,Y2 ≤ d2,1, . . . ,Yk ≤ dk,1)

= C (F1(d1,1),F2(d2,1), . . . ,Fk(dk,1), 1, 1, . . . , 1) = C (p1, p2, . . . , pk , 1, . . . , 1)

Thus the totalt defalut probability depends essentially on the copula C of
(Y1,Y2, . . . ,Yn).



Models with latent variables (contd.)

S = (S1,S2, . . . ,Sn)T is modelled by means of latent variables
Y = (Y1,Y2, . . . ,Yn)T , e.g. Yi could be the value of the assets of obligor
i

(firm value models).

Let dij , i = 1, 2, . . . , n, j = 0, 1, . . . ,m + 1 be threshold values such that
di,0 = −∞ und di,m+1 =∞ and Si = j ⇐⇒ Yi ∈ (di,j , di,j+1].

Let Fi be the distribution function of Yi . The probability of default for
obligor i is pi = Fi (di,1).

The probability that the fisrt k obligors default:

p1,2,...,k := P(Y1 ≤ d1,1,Y2 ≤ d2,1, . . . ,Yk ≤ dk,1)

= C (F1(d1,1),F2(d2,1), . . . ,Fk(dk,1), 1, 1, . . . , 1) = C (p1, p2, . . . , pk , 1, . . . , 1)

Thus the totalt defalut probability depends essentially on the copula C of
(Y1,Y2, . . . ,Yn).



Models with latent variables (contd.)

S = (S1,S2, . . . ,Sn)T is modelled by means of latent variables
Y = (Y1,Y2, . . . ,Yn)T , e.g. Yi could be the value of the assets of obligor
i (firm value models).

Let dij , i = 1, 2, . . . , n, j = 0, 1, . . . ,m + 1 be threshold values such that
di,0 = −∞ und di,m+1 =∞ and Si = j ⇐⇒ Yi ∈ (di,j , di,j+1].

Let Fi be the distribution function of Yi . The probability of default for
obligor i is pi = Fi (di,1).

The probability that the fisrt k obligors default:

p1,2,...,k := P(Y1 ≤ d1,1,Y2 ≤ d2,1, . . . ,Yk ≤ dk,1)

= C (F1(d1,1),F2(d2,1), . . . ,Fk(dk,1), 1, 1, . . . , 1) = C (p1, p2, . . . , pk , 1, . . . , 1)

Thus the totalt defalut probability depends essentially on the copula C of
(Y1,Y2, . . . ,Yn).



Models with latent variables (contd.)

S = (S1,S2, . . . ,Sn)T is modelled by means of latent variables
Y = (Y1,Y2, . . . ,Yn)T , e.g. Yi could be the value of the assets of obligor
i (firm value models).

Let dij , i = 1, 2, . . . , n, j = 0, 1, . . . ,m + 1 be threshold values such that
di,0 = −∞ und di,m+1 =∞ and Si = j ⇐⇒ Yi ∈ (di,j , di,j+1].

Let Fi be the distribution function of Yi . The probability of default for
obligor i is pi = Fi (di,1).

The probability that the fisrt k obligors default:

p1,2,...,k := P(Y1 ≤ d1,1,Y2 ≤ d2,1, . . . ,Yk ≤ dk,1)

= C (F1(d1,1),F2(d2,1), . . . ,Fk(dk,1), 1, 1, . . . , 1) = C (p1, p2, . . . , pk , 1, . . . , 1)

Thus the totalt defalut probability depends essentially on the copula C of
(Y1,Y2, . . . ,Yn).



Models with latent variables (contd.)

S = (S1,S2, . . . ,Sn)T is modelled by means of latent variables
Y = (Y1,Y2, . . . ,Yn)T , e.g. Yi could be the value of the assets of obligor
i (firm value models).

Let dij , i = 1, 2, . . . , n, j = 0, 1, . . . ,m + 1 be threshold values such that
di,0 = −∞ und di,m+1 =∞ and Si = j ⇐⇒ Yi ∈ (di,j , di,j+1].

Let Fi be the distribution function of Yi . The probability of default for
obligor i is pi = Fi (di,1).

The probability that the fisrt k obligors default:

p1,2,...,k := P(Y1 ≤ d1,1,Y2 ≤ d2,1, . . . ,Yk ≤ dk,1)

= C (F1(d1,1),F2(d2,1), . . . ,Fk(dk,1), 1, 1, . . . , 1) = C (p1, p2, . . . , pk , 1, . . . , 1)

Thus the totalt defalut probability depends essentially on the copula C of
(Y1,Y2, . . . ,Yn).



Models with latent variables (contd.)

S = (S1,S2, . . . ,Sn)T is modelled by means of latent variables
Y = (Y1,Y2, . . . ,Yn)T , e.g. Yi could be the value of the assets of obligor
i (firm value models).

Let dij , i = 1, 2, . . . , n, j = 0, 1, . . . ,m + 1 be threshold values such that
di,0 = −∞ und di,m+1 =∞ and Si = j ⇐⇒ Yi ∈ (di,j , di,j+1].

Let Fi be the distribution function of Yi . The probability of default for
obligor i is pi = Fi (di,1).

The probability that the fisrt k obligors default:

p1,2,...,k := P(Y1 ≤ d1,1,Y2 ≤ d2,1, . . . ,Yk ≤ dk,1)

= C (F1(d1,1),F2(d2,1), . . . ,Fk(dk,1), 1, 1, . . . , 1) = C (p1, p2, . . . , pk , 1, . . . , 1)

Thus the totalt defalut probability depends essentially on the copula C of
(Y1,Y2, . . . ,Yn).



The KMV model (see www.moodysanalytics.com)

The status variables S = (S1,S2, . . . ,Sn) can only take two values 0 or 1,
i.e. m = 1.

The latent variables Y = (Y1,Y2, . . . ,Yn)T depend on the value of the
assets of the obligors as follows.

Merton’s model
The balance sheet of each firm consists of assets and liabilities. The
latter are devided in debt and equities.

Notations:

VA,i (T ): value of assets of firm i at time point T

Ki := Ki (T ): value of the debt of firm i at time point T

VE ,i (T ): value of equity of firm i at time point T

Assumption: future asset value is modelled by a geometric Brownian
motion
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Assumption: future asset value is modelled by a geometric Brownian
motion



The KMV model (contd.)

VA,i (T ) = VA,i (t) exp
{(
µA,i −

σ2
A,i

2

)
(T − t) + σA,i (Wi (T )−Wi (t))

}
,

where

µA,i is the drift, σA,i is the volatility and (Wi (t) : 0 ≤ t ≤ T ) is a
standard Brownian motion (or equivalently a Wiener process).

Hence (Wi (T )−Wi (t)) ∼ N(0,T − t) and lnVA,i (T ) ∼ N(µ, σ2) with

µ = lnVA,i (t) +
(
µA,i −

σ2
A,i

2

)
(T − t) and σ2 = σ2

A,i (T − t).

Further Xi = I(−∞,Ki )(VA,i (T )) holds.

Set Yi = Wi (T )−Wi (t)√
T−t ∼ N(0, 1).

Then we get: Xi = I(−∞,Ki )(VA,i (T )) = I(−∞,−DDi )(Yi ) where

DDi =
ln VA,i (t)−ln Ki+(µA,i−

σ2
A,i
2 )(T−t)

σA,i

√
T−t

DDi is called distance-to-default.
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The KMV model (contd.)

Computation of the “distance to default”
VA,i (t), µA,i and σA,i are needed.
Difficulty: VA,i (t) can not be observed directly.

However VE ,i (t) can be observed by looking at the market stock prices.

KMVs viewpoint: the equity holders have the right, but not the
obligation, to pay off the holders of the other liabilities and take over the
remaining assets of the firm.

This can be seen as a call option on the firms assets with a strike price
equal to the book value of the firms liabilities.

Thus VE ,i (T ) = max{VA,i (T )− Ki , 0}.

The Black-Scholes formula implies (option price theory):

VE ,i (t) = C (VA,i (t), r , σA,i ) = VA,i (t)φ(e1)− Kie
−r(T−t)φ(e2), where

e1 =
ln(VA,i (t)−ln Ki+(r+σ2

A,i/2)(T−t)

σA,i (T−t) , e2 = e1 − σA,i (T − t),

φ is the the standard normal distribution function and r is the risk free
interest rate.
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Computation of the “distance to default” (contd.)

The KMV model also postulates
σE ,i = g(VA,i (t), σA,i , r), where g is some suitably selected proprietary
function.

VE ,i (t) and σE ,i are estimated based on historical data and the system of
equalities below is solved w.r.t. VA,i (t) and σA,i :

VE ,i (t) = C (VA,i (t), r , σA,i )
σE ,i = g(VA,i (t), σA,i , r)

The values obtained for VA,i (t) and σA,i are used to compute DDi :

DDi =
ln VA,i (t)−ln Ki+(µA,i−

σ2
A,i
2 )(T−t)

σA,i

√
T−t .

Then P(VA,i (T ) < Ki ) = P(Yi < −DDi ) and in the general setup of the
latent variable model with m = 1 we have di1 = −DDi .
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The expected default frequency (EDF)

In the KMV model the default probability is not computed by setting
pi := P(Yi < −DDi ).

Alternative: historical data are used to identify companies which at some
stage in their history had the same distance to default DDi .

Then the observed default frequency is used as an estimator for the
default probability pi . This estimator is called expected default frequency,
(EDF).

Summary of the univariate KMV model to compute the default
probability of a company:

I Estimate the asset value VA,i and the volatilty σA,i by using
observations of the market value and the volatility of equity VE ,i ,
σE ,i , the book of liabilities Ki , and by solving the system of
equations above.

I Compute the distance-to-default DDi by means of the
corresponding formula.

I Estimate the default probability pi in terms of the empirical
distribution which relates the distance to default with the expected
default frequency.
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The multivariate KMV model: computation of
multivariate default probabilities for n debtors

Let Wj(t) be independent standard Brownian motions for 0 ≤ t ≤ T ,
j = 1, 2, . . . , n.

Basic model:VA,i (T ) =

VA,i (t) exp

{(
µA,i −

σ2
A,i

2

)
(T − t) +

∑n
j=1 σA,i,j

(
Wj(T )−Wj(t)

)}
,

where

µA,i is the drift, σ2
A,i =

∑n
j=1 σ

2
A,i,j is the volatility, and σA,i,j quantifies

the impact of the jth Brownian motion on the asset value of firm i ,
i , j ∈ {1, 2, . . . , n}.

Set Yi :=
∑m

j=1 σA,i,j (Wj (T )−Wj (t))

σA,i

√
T−t . Then Y = (Y1,Y2, . . . ,Yn) ∼ Nn(0,Σ),

where Σ = (σij) ∈ Rn×n and σij :=
∑n

k=1 σA,i,kσA,j,k

σA,iσA,j
.

We get VA,i (T ) < Ki ⇐⇒ Yi < −DDi for all i ∈ {1, 2, . . . , n} with

DDi =

ln VA,i (t)−ln Ki+

(
−σ2

A,i
2 +µA,i

)
(T−t)

σA,i

√
T−t .
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The multivariate KMV model (contd.)

The probability that the k first firms default:

P(X1 = 1,X2 = 1, . . . ,Xk = 1) = P(Y1 < −DD1, . . . ,Yk < −DDk)
= CGa

Σ (φ(−DD1), . . . , φ(−DDk), 1, . . . , 1),

where CGa
Σ is the copula of a n-variate normal distribution with

covariance matrix Σ.

Joint default frequency:

JDF1,2,...,k = CGa
Σ (EDF1,EDF2, . . . ,EDFk , 1, . . . , 1),

where EDFi is the default frequency for firm i , i = 1, 2, . . . , k .
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Estimation of covariances/correlations σA,i ,j

Difficulties:

I The number n of debtors is typically quite large

I relatively few historical data available

I if n is large, then the pairwise estimated correlations coefficients do
not build a positive correlation matrix, in general.

Possible approach:
Factor model for the latent variables in which the asset value of a
company depends on certain common factors (macro-economical, global,
regional, sector-based or country-based factors) and a company specific
factor.

Y = (Y1,Y2, . . . ,Yn)T = AZ + BU where

Z = (Z1, . . . ,Zk)T ∼ Nk(0,Λ) are the k common factors,
U = (U1, . . . ,Un)T ∼ Nn(0, I ) are the company specific factors such that
Z and U are independent, and the constant matrices A = (aij) ∈ Rn×k ,
B = diag(b1, . . . , bn) ∈ Rn×n are model parameters.

Then we have cov(Y ) = AΛAT +D where D = diag(b2
1, . . . , b

2
n) ∈ Rn×n.
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Migration based models: Credit Metrics

It was developed by J.P.Morgan, see also MSCI
(https://www.msci.com/)

It is primarily used fo the evaluation of bond portfolios (Siehe Crouhy et
al. (2000)) and is based on a rating system (eg. Moody’s or Standard
and Poor’s).

It considers the changes of the portfolio value due to changes on the
corresponding rating categories of the assets.

Let P be a portfolio consisting of n credits with a fixed holding duration
(eg. 1 year). Let Si be the status variable for debtor i , where the states
are 0, 1, . . . ,m and Si = 0 corresponds to default.

Example: Rating system of Standard and Poor’s
m = 7; Si = 0 means default; Si = 1 or CCC ; Si = 2 or B; Si = 3 or BB;
Si = 4 or BBB; Si = 5 or A; Si = 6 or AA; Si = 7 or AAA.



Migration based models: Credit Metrics
It was developed by J.P.Morgan, see also MSCI
(https://www.msci.com/)

It is primarily used fo the evaluation of bond portfolios (Siehe Crouhy et
al. (2000)) and is based on a rating system (eg. Moody’s or Standard
and Poor’s).

It considers the changes of the portfolio value due to changes on the
corresponding rating categories of the assets.

Let P be a portfolio consisting of n credits with a fixed holding duration
(eg. 1 year). Let Si be the status variable for debtor i , where the states
are 0, 1, . . . ,m and Si = 0 corresponds to default.

Example: Rating system of Standard and Poor’s
m = 7; Si = 0 means default; Si = 1 or CCC ; Si = 2 or B; Si = 3 or BB;
Si = 4 or BBB; Si = 5 or A; Si = 6 or AA; Si = 7 or AAA.



Migration based models: Credit Metrics
It was developed by J.P.Morgan, see also MSCI
(https://www.msci.com/)

It is primarily used fo the evaluation of bond portfolios (Siehe Crouhy et
al. (2000)) and is based on a rating system (eg. Moody’s or Standard
and Poor’s).

It considers the changes of the portfolio value due to changes on the
corresponding rating categories of the assets.

Let P be a portfolio consisting of n credits with a fixed holding duration
(eg. 1 year). Let Si be the status variable for debtor i , where the states
are 0, 1, . . . ,m and Si = 0 corresponds to default.
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m = 7; Si = 0 means default; Si = 1 or CCC ; Si = 2 or B; Si = 3 or BB;
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Migration based models: Credit Metrics (contd.)

For each debtor the dynamics of the status variable is modelled by means
of a Markov chain with status set {0, 1, . . . ,m} and transition matrix P.

The transition probabilities are computed based on historical data: e.g.

Original state category at the end of the year
state category AAA AA A BBB BB B CCC default

AAA 90.81 8.33 0.68 0.06 0.12 0 0 0
AA 0.70 90.65 7.79 0.64 0.06 0.14 0.02 0
A 0.09 2.27 91.05 5.52 0.74 0.26 0.01 0.06

BBB 0.02 0.33 5.95 86.93 5.30 1.17 0.12 0.18
BB 0.03 0.14 0.67 7.73 80.53 8.84 1.00 1.06
B 0 0.11 0.24 0.43 6.48 83.46 4.07 5.20

CCC 0.22 0 0.22 1.30 2.38 11.24 64.86 19.79

Recovery rates
In case of default the recovery rate depends on the status category of the
defaulting debtor (prior to default). The mean and the standard
deviation of the recovery rate are computed based on the historical data
observed over time within each state category.
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Evaluation of bonds if the status category changes

Example: Consider a BBB bond with maturity 5 years, a nominal value
of 100 units and a coupon of 6% each year.
The forward yield curves for each status category are given as follows (in
%):

Status Year 1 Year 2 Year 3 Year 4
AAA 3.60 4.17 4.73 5.12
AA 3.65 4.22 4.78 5.17
A 3.73 4.32 4.93 5.32

BBB 4.10 4.67 5.25 5.63
BB 6.05 7.02 8.03 8.52

CCC 15.05 15.02 14.03 13.52

The bond pays 6 units at the end of the 4 years 1, 2, 3, 4 and 106 unit at
the end of year 5.

Assumption: At the end of the first year the bond is rated as an A bond.
The value at the end of the first year:

V = 6+
6

1 + 3, 73%
+

6

(1 + 4, 32%)2
+

6

(1 + 4, 93%)3
+

106

(1 + 5, 32%)4
= 108.64
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Evaluation of bonds if the status category changes
(contd.)

Example (contd.)
Analogous evaluation of the bond for other status category changes.

Assumption: recovery rate in case of default is 51.13%.

Status category at the end of the first year value
AAA 109.35
AA 109.17
A 108.64

BBB 107.53
BB 102.01
B 98.09

CCC 83.63
Default 51.13

Then use the transition probabilities of the Markov chain (estimated in
terms of historical data) to compute the expected value of the bond at
the end of the first year.
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Value and risk of a bond portfolio in Credit Metrics

The dependencies between the status category changes of different bonds
and the probabilities of simultaneous status category changes of bonds
are modelled by means of the bond returns

The return of bond i is modelled by a normal distribution Yi .

Let dDef , dCCC , . . ., dAAA = +∞ be thresholds which define the
transitions probabilities of debtor i at the end of the current period as
follows:

P(Si = 0) = φ(dDef ), P(Si = CCC ) = φ(dCCC )− φ(dDef ), . . .,
P(Si = AAA) = 1− φ(AA).

These thresholds can be estimated in terms of historical data.

The return of a vector of bonds is modelled as a multivariate normal
distribution with correlation matrix R estimated by means of factor
models.

Joint probabilities of status category changes, e.g.

P(S1 = 0, . . . ,Sn = 3) = P(Y1 ≤ dDef , . . . , dB < Yn ≤ dBB)

can be then computed by using the Gaussian copula CGa
n,R of

(Y1,Y2, . . . ,Yn).

The risk measures (VaR, CVaR) of the bond portfolio, can be computed
by simulation.
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