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If $(0) = 400, then ¢~ = ¢~ 1.
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Theorem: Let G be a distribution function on [0, c0) such that
(0) = 0. Let ¢ be the Laplace-Stieltjes transform of G, i.e.
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» the generator function needs to fulfill quite restrictive technical
assumptions



Simulation of Gaussian copulas



Simulation of Gaussian copulas

Observe: Consider a symmetric positive definite matrix R € IR?*9 and
its Cholesky factorization AAT = R with A € R?*?. If
Z1,25,...,2Z4 ~ N(0,1) are independent, then p+ AZ ~ Ng(p, R).



Simulation of Gaussian copulas

Observe: Consider a symmetric positive definite matrix R € IR?*9 and
its Cholesky factorization AAT = R with A € R?*?. If
Z1,25,...,2Z4 ~ N(0,1) are independent, then p+ AZ ~ Ng(p, R).

Algorithm: for the generation of a random vector U = (Uy, Us, ..., Uy)
whose distribution function is the copula C,ga, R positive definite with all
ones on the main diagonal.

» Compute the Cholesly factorization of R: R = AAT.



Simulation of Gaussian copulas

Observe: Consider a symmetric positive definite matrix R € IR?*9 and
its Cholesky factorization AAT = R with A € R?*?. If
Z1,25,...,2Z4 ~ N(0,1) are independent, then p+ AZ ~ Ng(p, R).

Algorithm: for the generation of a random vector U = (Uy, Us, ..., Uy)
whose distribution function is the copula C,g"’, R positive definite with all
ones on the main diagonal.

» Compute the Cholesly factorization of R: R = AAT.

» Simulate d independent standard normally distributed r.v.
Zy,2,,...,Zq4 ~ N(0,1)



Simulation of Gaussian copulas

Observe: Consider a symmetric positive definite matrix R € IR?*9 and
its Cholesky factorization AAT = R with A € R?*?. If
Z1,25,...,2Z4 ~ N(0,1) are independent, then p+ AZ ~ Ng(p, R).

Algorithm: for the generation of a random vector U = (Uy, Us, ..., Uy)
whose distribution function is the copula C,g"’, R positive definite with all
ones on the main diagonal.

» Compute the Cholesly factorization of R: R = AAT.

» Simulate d independent standard normally distributed r.v.
Zy,2,,...,Zq4 ~ N(0,1)

> Set X := AZ



Simulation of Gaussian copulas

Observe: Consider a symmetric positive definite matrix R € IR?*9 and
its Cholesky factorization AAT = R with A € R?*?. If
Z1,25,...,2Z4 ~ N(0,1) are independent, then p+ AZ ~ Ng(p, R).

Algorithm: for the generation of a random vector U = (Uy, Us, ..., Uy)
whose distribution function is the copula C,g"’, R positive definite with all
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» Compute the Cholesly factorization of R: R = AAT.
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Simulate d independent standard normally distributed r.v.
Zy,2,,...,Zq4 ~ N(0,1)

Set X .= AZ

Set Ux := ¢(Xk) for k =1,2,...,d, where ¢ is the standard normal
distribution function.
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Observe: Consider a symmetric positive definite matrix R € IR?*9 and
its Cholesky factorization AAT = R with A € R?*?. If
Z1,25,...,2Z4 ~ N(0,1) are independent, then p+ AZ ~ Ng(p, R).

Algorithm: for the generation of a random vector U = (Uy, Us, ..., Uy)
whose distribution function is the copula C,g"’, R positive definite with all
ones on the main diagonal.

» Compute the Cholesly factorization of R: R = AAT.

» Simulate d independent standard normally distributed r.v.
Zy,2,,...,Zq4 ~ N(0,1)

> Set X := AZ

> Set Uy := ¢(X) for k =1,2,...,d, where ¢ is the standard normal
distribution function.

» Output U = (Ui, Ua, ..., Uyg); U has distribution function C&2.
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Compute the Cholesly factorization of R: R = AAT.
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Simulation of t-copulas

Algorithm: for the generation of a random vector U = (Us, Ua, ..., Uy)
whose distribution function is the copula CIE’R, R positive definite with all
ones on the main diagonal, v € IN.

» Compute the Cholesly factorization of R: R = AAT.

» Simulate d independent standard normally distributed r.v.
Z1,Z5,...,Z4 ~ N(0,1)

» Simulate a r.v. S ~ X2 independent from von Zy, ..., Z,.
> Set Y :=AZ
> Set X := L;Y

> Set Uy = t,(Xk) for k =1,2,...,d, where t, is the distribution
function of a standard t-distribution with v degrees of freedom.

> OUtpUt U= (Ul7 U2, ey Ud); U= (Ul, U2, ey Ud) has
distribution function C,iR.
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Simulation of Archimedian copulas

A generic algorithm to generate a random vector U = (Uy, Uy, ..., Uy)
with a given Archimedian copula as cumulative distribution function
Input: The dimension d € IN, the Archimedian Copula

C(u) = o (p(u1) + o(u2) + ... + p(ug)) specified in terms of its
generator .

» Simulate a variable X with distribution function G, such that the
Laplace-Stieltjes transform v of G is the inverse function of the
generator ¢ of the input copula, 1 = ¢~ 1.

> Simulate d i.i.d. r.v. V4,Vs,. .., Vg uniformly distributed on [0, 1].

> Set U = (6(— In(V4)/X), (= In(Va)/X), ..., t(— In(Vas)/X)).
The distribution function of U is C.

Output: U

The generator (t) = (7% —1)/0, 6 > 0 yields the Clayton copula CS'.
Alternatively also 3(t) = t=% — 1 is a generator of the Clayton copula.
For X ~ Gamma(1/9, 1) with d.f. fx(x) = (x}/=1e™) /I (1/6) we have:

,sX f() e 1 Xl/Oflefde: (5+1)71/9 90 1( )
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Simulation of the Clayton copula (¢ > 0)

A generic algorithm to generate a random vector U = (Uy, Us, ..., Uy)
with the Clayton CS' copula as distribution function.

Input: The dimension d € IN, the parameter 6 > 0.
> Simulate X ~ Gamma(1/0,1).
> Set ¢(s) == (s+1)"7 for s > 0.
> Simulate d i.i.d. r.v. Vi, Vs,. .., Vy uniformly distributed on [0, 1].

» The distribution function of
U= (¢(=In(V1)/X),¢(= In(V2)/X), ..., ¥(—In(V4)/X))
is the Clayton copula Cf'.

Output: U
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Let X be a positive stable r.v., X ~ St(1/6,1,~,0) with

v = (cos(r/(20)))? >0 (and = 3, =1, 6 =0)

The Laplace-Stieltjes transform of Fx is o(t) = exp(—t'/?), the inverse
of the generator of the Gumbel copula C{.

The simulation of Z ~ ST(a, 8,1,0) is not straightforward (no analytic
expression for the inverse F~!(x) nor F(x); see also Nolan 2002).

For a #1 we get: X =6 +~vZ ~ St(a, 8,7, 9).
The case a = 1 is more complicated.

Alternative approach:

Let # > 1 and F(x) =1 — F(x) := exp(—x*?) for x > 0. Let

V ~ U(0,1) and let S be a r.v. independent from V with density
function h(s) = (1 —1/0 4 s/0) exp(—s) for s > 0.

Set (Zl,Zz)T = (\/597 (1 - \/)SQ)T

The distribution function of (F(Z1), F(Z))" is C£. Convince yourself!
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Simulation of the Gumbel copula (¢ > 1) (contd.)

Algorithm to generate a random vector U = (Uy, Us, ..., Uy) with the
Gumbel copula CS¥ as distribution function.
Input: The dimension d € IN, the parameter 6 > 1.

> Simulate two i.i.d. r.v. Vi, Vo ~ U(0,1).

> Simulate two independent r.v. Wy, W, with Wy ~ T'(1,1),
Wy ~T(2,1)

> Set S .= IV2§1/9W1 + IV2>1/9 Ws.
> Set (21722) = (V159,(1 — V1)59)

T
> The distribution function of U = (exp(le/e),exp(ZQI/a)> is
cse.

Output: U
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Calibration of copulas

Goal: Determine a copula and the marginal distributions to model a
given multi-dimensional data set.

Input: A sample {X1,X5,..., Xy} of a c.d.f. F with continuous marginal
distributions Fy, F»,..., Fq4.

Output: A copula Cy and an estimator 0 for the parameter vector 6 of
the copula Cy such which F(x) ~ C;(Fi(x1),- .., Fa(xg)) holds.
Question 1: Which family of (known) copulas to use?

Answer: Selection of a suitable family of copulas based on (a) the visual
comparison of the graphical representations of the data set on one side
and of known copulas on the other, and (b) the empirical tail dependence
coefficients.

Question 2: Estimation of the parameters of the prespecified family of
copulas used for the modelling?



