Definition: Let the copula C be the c.d.f. of a random vector (U_1,U_2,\ldots,U_d) with $U_i\sim U[0,1],\ i=1,2,\ldots,d$. The c.d.f. of $(1-U_1,1-U_2,\ldots,1-U_d)$ is called *survival copula* of C and is denoted by \hat{C} .

Definition: Let the copula C be the c.d.f. of a random vector (U_1,U_2,\ldots,U_d) with $U_i\sim U[0,1],\ i=1,2,\ldots,d$. The c.d.f. of $(1-U_1,1-U_2,\ldots,1-U_d)$ is called *survival copula* of C and is denoted by \hat{C} .

Lemma: Let X be a random vector with multivariate tail distribution function \bar{F} ($\bar{F}(x_1, x_2, \ldots, x_d) := Prob(X_1 > x_1, X_2 > x_2, \ldots, X_d > x_d)$) and marginal distributions F_i , $i = 1, 2, \ldots, d$. Let $\bar{F}_i := 1 - F_i$, $i = 1, 2, \ldots, d$. Then the following holds

$$\bar{F}(x_1, x_2, \dots, x_d) = \hat{C}(\bar{F}_1(x_1), \bar{F}_2(x_2), \dots, \bar{F}_d(x_d).$$

Definition: Let the copula C be the c.d.f. of a random vector (U_1,U_2,\ldots,U_d) with $U_i\sim U[0,1],\ i=1,2,\ldots,d$. The c.d.f. of $(1-U_1,1-U_2,\ldots,1-U_d)$ is called *survival copula* of C and is denoted by \hat{C} .

Lemma: Let X be a random vector with multivariate tail distribution function \bar{F} ($\bar{F}(x_1, x_2, \ldots, x_d) := Prob(X_1 > x_1, X_2 > x_2, \ldots, X_d > x_d)$) and marginal distributions F_i , $i = 1, 2, \ldots, d$. Let $\bar{F}_i := 1 - F_i$, $i = 1, 2, \ldots, d$. Then the following holds

$$\bar{F}(x_1, x_2, \dots, x_d) = \hat{C}(\bar{F}_1(x_1), \bar{F}_2(x_2), \dots, \bar{F}_d(x_d).$$

Lemma: For any copula C and its survival copula \hat{C} the following holds $\hat{C}(1-u_1,1-u_2)=1-u_1-u_2+C(u_1,u_2)$.

Definition: Let the copula C be the c.d.f. of a random vector (U_1,U_2,\ldots,U_d) with $U_i\sim U[0,1],\ i=1,2,\ldots,d$. The c.d.f. of $(1-U_1,1-U_2,\ldots,1-U_d)$ is called *survival copula* of C and is denoted by \hat{C} .

Lemma: Let X be a random vector with multivariate tail distribution function \bar{F} ($\bar{F}(x_1, x_2, \ldots, x_d) := Prob(X_1 > x_1, X_2 > x_2, \ldots, X_d > x_d)$) and marginal distributions F_i , $i = 1, 2, \ldots, d$. Let $\bar{F}_i := 1 - F_i$, $i = 1, 2, \ldots, d$. Then the following holds

$$\bar{F}(x_1, x_2, \dots, x_d) = \hat{C}(\bar{F}_1(x_1), \bar{F}_2(x_2), \dots, \bar{F}_d(x_d).$$

Lemma: For any copula C and its survival copula \hat{C} the following holds $\hat{C}(1-u_1,1-u_2)=1-u_1-u_2+C(u_1,u_2)$.

Theorem: Let $(X_1,X_2)^T$ be a random vector with continuous marginal distributions and a unique copula C. The following equalities hold $\lambda_U(X_1,X_2)=\lim_{u\to 1^-}\frac{1-2u+C(u,u)}{1-u}$ and $\lambda_L(X_1,X_2)=\lim_{u\to 0^+}\frac{C(u,u)}{u}$, provided that the limits exist.

Exmaples of copulas:

Exmaples of copulas:

The Gumbel family of copulas:

$$C_{ heta}^{\mathsf{Gu}}(\mathit{u}_1, \mathit{u}_2) = \exp\left(-\left[(-\ln \mathit{u}_1)^{ heta} + (-\ln \mathit{u}_2)^{ heta}
ight]^{1/ heta}
ight), \; heta \geq 1$$

We have
$$\lambda_U=2-2^{1/ heta}$$
, $\lambda_L=0$.

Exmaples of copulas:

The Gumbel family of copulas:

$$C_{\theta}^{\mathsf{Gu}}(\mathit{u}_1,\mathit{u}_2) = \exp\left(-\left[(-\ln \mathit{u}_1)^{\theta} + (-\ln \mathit{u}_2)^{\theta}\right]^{1/\theta}\right), \,\, \theta \geq 1$$

We have $\lambda_U = 2 - 2^{1/\theta}$, $\lambda_L = 0$.

The Clayton family of copulas:

$$C_{\theta}^{\mathsf{CI}}(u_1, u_2) = (u_1^{-\theta} + u_2^{-\theta} - 1)^{1/\theta}, \ \theta > 0$$

We have $\lambda_U = 0$, $\lambda_L = 2^{-1/\theta}$.

Definition: Let X be a d-dimensional random vector. Let $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi \colon [0, \infty) \to \mathbb{R}$ be a function such that $\phi_{X-\mu} = \psi(t^T \Sigma t)$ holds for the characteristic function $\phi_{X-\mu}$ of $X - \mu$. Then X is an elliptically distributed random vector with parameters μ , Σ , ψ . Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

Definition: Let X be a d-dimensional random vector. Let $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi \colon [0, \infty) \to \mathbb{R}$ be a function such that $\phi_{X-\mu} = \psi(t^T \Sigma t)$ holds for the characteristic function $\phi_{X-\mu}$ of $X - \mu$. Then X is an elliptically distributed random vector with parameters μ , Σ , ψ . Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

 ψ is the generating function (or the generator) of X.

Definition: Let X be a d-dimensional random vector. Let $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi \colon [0, \infty) \to \mathbb{R}$ be a function such that $\phi_{X-\mu} = \psi(t^T \Sigma t)$ holds for the characteristic function $\phi_{X-\mu}$ of $X - \mu$. Then X is an elliptically distributed random vector with parameters μ , Σ , ψ . Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

 ψ is the generating function (or the generator) of X.

For d=1 the elliptical distributions coincide with distributions which are symmetric w.r.t. μ . (Convince yourself! Exploit the stochastic representation of elliptical distributions.)

Definition: Let X be a d-dimensional random vector. Let $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi \colon [0, \infty) \to \mathbb{R}$ be a function such that $\phi_{X-\mu} = \psi(t^T \Sigma t)$ holds for the characteristic function $\phi_{X-\mu}$ of $X - \mu$. Then X is an elliptically distributed random vector with parameters μ , Σ , ψ . Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

 ψ is the generating function (or the generator) of X.

For d=1 the elliptical distributions coincide with distributions which are symmetric w.r.t. μ . (Convince yourself! Exploit the stochastic representation of elliptical distributions.)

Theorem:(Stochastic representation)

A d-dimensional random vector X is elliptically distributed, $X \sim E_d(\mu, \Sigma, \psi)$ with $rang(\Sigma) = k$, iff there exist a matrix $A \in \mathbb{R}^{d \times k}$, $A^T A = \Sigma$, a nonnegative r.v. R and a k-dimensional random vector U uniformly distributed on the unit ball $\mathcal{S}^{k-1} = \{z \in \mathbb{R}^k \colon z^T z = 1\}$, such that R and U are independent and $X \stackrel{d}{=} \mu + RAU$.

Definition: Let X be a d-dimensional random vector. Let $\mu \in \mathbb{R}^d$ and $\Sigma \in \mathbb{R}^{d \times d}$ be constants, and let $\psi \colon [0, \infty) \to \mathbb{R}$ be a function such that $\phi_{X-\mu} = \psi(t^T \Sigma t)$ holds for the characteristic function $\phi_{X-\mu}$ of $X - \mu$. Then X is an elliptically distributed random vector with parameters μ , Σ , ψ . Notation: $X \sim E_d(\mu, \Sigma, \psi)$.

 ψ is the generating function (or the generator) of X.

For d=1 the elliptical distributions coincide with distributions which are symmetric w.r.t. μ . (Convince yourself! Exploit the stochastic representation of elliptical distributions.)

Theorem:(Stochastic representation)

A d-dimensional random vector X is elliptically distributed, $X \sim E_d(\mu, \Sigma, \psi)$ with $rang(\Sigma) = k$, iff there exist a matrix $A \in \mathbb{R}^{d \times k}$, $A^T A = \Sigma$, a nonnegative r.v. R and a k-dimensional random vector U uniformly distributed on the unit ball $\mathcal{S}^{k-1} = \{z \in \mathbb{R}^k \colon z^T z = 1\}$, such that R and U are independent and $X \stackrel{d}{=} \mu + RAU$.

Remark: An elliptically distributed random vector X ist *radial symmetric*, i.e. $X - \mu \stackrel{d}{=} \mu - X$.

Definition: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and marginal distributions F_1, F_2, \ldots, F_d . The unique copula C of X (or F) with $C(u) = F(F_1^{\leftarrow}(u_1), \ldots, F_d^{\leftarrow}(u_d))$, is called an *elliptical copula*.

Definition: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and marginal distributions F_1, F_2, \ldots, F_d . The unique copula C of X (or F) with $C(u) = F(F_1^{\leftarrow}(u_1), \ldots, F_d^{\leftarrow}(u_d))$, is called an *elliptical copula*.

Example: Gaussian copulas are elliptical copulas

Definition: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and marginal distributions F_1, F_2, \ldots, F_d . The unique copula C of X (or F) with $C(u) = F(F_1^{\leftarrow}(u_1), \ldots, F_d^{\leftarrow}(u_d))$, is called an *elliptical copula*.

Example: Gaussian copulas are elliptical copulas Let C_R^{Ga} be the copula of a d-dimensional normal distribution with correlation matrix R. Then $C_R^{Ga}(u) = \phi_R^d(\phi^{-1}(u_1),\ldots,\phi^{-1}(u_d))$ holds, where ϕ_R^d is the c.d.f. of a d-dimensional normal distribution with expected vector 0 and correlation matrix R, and ϕ^{-1} is the inverse of the standard normal distribution function.

Definition: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and marginal distributions F_1, F_2, \ldots, F_d . The unique copula C of X (or F) with $C(u) = F(F_1^{\leftarrow}(u_1), \ldots, F_d^{\leftarrow}(u_d))$, is called an *elliptical copula*.

Example: Gaussian copulas are elliptical copulas

Let C_R^{Ga} be the copula of a d-dimensional normal distribution with correlation matrix R. Then $C_R^{Ga}(u) = \phi_R^d(\phi^{-1}(u_1), \dots, \phi^{-1}(u_d))$ holds, where ϕ_R^d is the c.d.f. of a d-dimensional normal distribution with expected vector 0 and correlation matrix R, and ϕ^{-1} is the inverse of the standard normal distribution function.

Since the normal distribution is elliptic, the Gaussian copula C_R^{Ga} is by definition an elliptic copula.

Definition: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with c.d.f. F and marginal distributions F_1, F_2, \ldots, F_d . The unique copula C of X (or F) with $C(u) = F(F_1^{\leftarrow}(u_1), \ldots, F_d^{\leftarrow}(u_d))$, is called an *elliptical copula*.

Example: Gaussian copulas are elliptical copulas

Let C_R^{Ga} be the copula of a d-dimensional normal distribution with correlation matrix R. Then $C_R^{Ga}(u) = \phi_R^d(\phi^{-1}(u_1), \dots, \phi^{-1}(u_d))$ holds, where ϕ_R^d is the c.d.f. of a d-dimensional normal distribution with expected vector 0 and correlation matrix R, and ϕ^{-1} is the inverse of the standard normal distribution function.

Since the normal distribution is elliptic, the Gaussian copula C_R^{Ga} is by definition an elliptic copula.

In the bivariate case we have:

$$\begin{array}{l} C_R^{Ga}(u_1,u_2) = \int_{-\infty}^{\phi^{-1}(u_1)} \int_{-\infty}^{\phi^{-1}(u_2)} \frac{1}{2\pi(1-\rho^2)^{1/2}} \exp\left\{\frac{-(x_1^2-2\rho x_1 x_2 + x_2^2)}{2(1-\rho^2)}\right\} dx_1 dx_2, \\ \text{where } \rho \in (-1,1). \end{array}$$

Definition: Let $X \stackrel{d}{=} \mu + \frac{\sqrt{\alpha}}{\sqrt{S}}AZ \sim t_d(\alpha,\mu,\Sigma)$, where $\mu \in \mathbb{R}^d$, $\alpha \in \mathbb{N}$, $\alpha > 1$, $S \sim \chi^2_\alpha$, $A \in \mathbb{R}^{d \times k}$ with $AA^t = \Sigma$, $Z \sim N_k(0,I_k)$, and S and Z independent. We say that X has a d-dimensional t-distribution with expectation μ (for $\alpha > 1$) and covariance matrix $Cov(X) = \frac{\alpha}{\alpha - 2}\Sigma$. ($\alpha > 2$ should hold, Cov(X) does not exist for $\alpha \leq 2$.)

Definition: Let $X \stackrel{d}{=} \mu + \frac{\sqrt{\alpha}}{\sqrt{S}}AZ \sim t_d(\alpha,\mu,\Sigma)$, where $\mu \in \mathbb{R}^d$, $\alpha \in \mathbb{N}$, $\alpha > 1$, $S \sim \chi_\alpha^2$, $A \in \mathbb{R}^{d \times k}$ with $AA^t = \Sigma$, $Z \sim N_k(0,I_k)$, and S and Z independent. We say that X has a d-dimensional t-distribution with expectation μ (for $\alpha > 1$) and covariance matrix $Cov(X) = \frac{\alpha}{\alpha - 2}\Sigma$. $(\alpha > 2$ should hold, Cov(X) does not exist for $\alpha \leq 2$.)

Definition: The (unique) copula $C_{\alpha,R}^t$ of X is called t-copula:

$$C_{\alpha,R}^{t}(u) = t_{\alpha,R}^{d}(t_{\alpha}^{-1}(u_{1}), \dots, t_{\alpha}^{-1}(u_{d})).$$

 $R_{ij} = rac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{ji}}}, \; i,j=1,2\ldots,d,$ is the correlation matrix of AZ.

 $t_{\alpha,R}^d$ is the cdf of $\frac{\sqrt{\alpha}}{\sqrt{S}}Y$, where $S \sim \chi_{\alpha}^2$, $Z \sim N_k(0,R)$, and S, Y are independent. t_{α} are the marginal distributions of $t_{\alpha,R}^d$.

Definition: Let $X \stackrel{d}{=} \mu + \frac{\sqrt{\alpha}}{\sqrt{S}}AZ \sim t_d(\alpha,\mu,\Sigma)$, where $\mu \in \mathbb{R}^d$, $\alpha \in \mathbb{N}$, $\alpha > 1$, $S \sim \chi_\alpha^2$, $A \in \mathbb{R}^{d \times k}$ with $AA^t = \Sigma$, $Z \sim N_k(0,I_k)$, and S and Z independent. We say that X has a d-dimensional t-distribution with expectation μ (for $\alpha > 1$) and covariance matrix $Cov(X) = \frac{\alpha}{\alpha - 2}\Sigma$. $(\alpha > 2$ should hold, Cov(X) does not exist for $\alpha \leq 2$.)

Definition: The (unique) copula $C_{\alpha,R}^t$ of X is called t-copula:

$$C_{\alpha,R}^{t}(u) = t_{\alpha,R}^{d}(t_{\alpha}^{-1}(u_{1}), \ldots, t_{\alpha}^{-1}(u_{d})).$$

 $R_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{ii}}}, i,j = 1,2...,d$, is the correlation matrix of AZ.

 $t_{\alpha,R}^d$ is the cdf of $\frac{\sqrt{\alpha}}{\sqrt{S}}Y$, where $S \sim \chi_{\alpha}^2$, $Z \sim N_k(0,R)$, and S, Y are independent. t_{α} are the marginal distributions of $t_{\alpha,R}^d$.

In the bivariate case (d = 2):

$$C_{\alpha,R}^{t}(u_1,u_2) = \int_{-\infty}^{t_{\alpha}^{-1}(u_1)} \int_{-\infty}^{t_{\alpha}^{-1}(u_2)} \frac{1}{2\pi(1-\rho^2)^{1/2}} \left\{ 1 + \frac{x_1^2 - 2\rho x_1 x_2 + x_2^2}{\alpha(1-\rho^2)} \right\}^{-\frac{\alpha+2}{2}} dx_1 dx_2.$$

for $\rho \in (-1,1)$. R_{12} is the linear correlation coefficient of the corresponding bivariate t_{α} -distribution for $\alpha > 2$.

Definition: (Radial symmetry)

A *d*-dimensional random vector X (or a *d*-variate distribution function) is called *radial symmetric around* a, for some $a \in \mathbb{R}^d$, iff $X - a \stackrel{d}{=} a - X$.

Definition: (Radial symmetry)

A *d*-dimensional random vector X (or a *d*-variate distribution function) is called *radial symmetric around* a, for some $a \in \mathbb{R}^d$, iff $X - a \stackrel{d}{=} a - X$.

Example: An elliptically distributed random vector $X \sim E_d(\mu, \Sigma, \psi) \in \mathbb{R}^d$ is radial symmetric around μ .

Definition: (Radial symmetry)

A *d*-dimensional random vector X (or a *d*-variate distribution function) is called *radial symmetric around* a, for some $a \in \mathbb{R}^d$, iff $X - a \stackrel{d}{=} a - X$.

Example: An elliptically distributed random vector $X \sim E_d(\mu, \Sigma, \psi) \in \mathbb{R}^d$ is radial symmetric around μ .

Definition: (Radial symmetry of copulas) A copula *C* is called radial symmetric iff

$$(U_1 - 0.5, \dots, U_d - 0.5) \stackrel{d}{=} (0.5 - U_1, \dots, 0.5 - U_d) \iff U \stackrel{d}{=} 1 - U,$$

where (U_1, U_2, \dots, U_d) is a random vector with distribution function C. For a radial symmetric copula $C = \hat{C}$ holds.

Definition: (Radial symmetry)

A *d*-dimensional random vector X (or a *d*-variate distribution function) is called *radial symmetric around* a, for some $a \in \mathbb{R}^d$, iff $X - a \stackrel{d}{=} a - X$.

Example: An elliptically distributed random vector $X \sim E_d(\mu, \Sigma, \psi) \in \mathbb{R}^d$ is radial symmetric around μ .

Definition: (Radial symmetry of copulas) A copula *C* is called radial symmetric iff

$$(U_1 - 0.5, \dots, U_d - 0.5) \stackrel{d}{=} (0.5 - U_1, \dots, 0.5 - U_d) \iff U \stackrel{d}{=} 1 - U,$$

where (U_1, U_2, \dots, U_d) is a random vector with distribution function C. For a radial symmetric copula $C = \hat{C}$ holds.

Example: Elliptical copulas are radial symmetric.

Definition: (Radial symmetry)

A *d*-dimensional random vector X (or a *d*-variate distribution function) is called *radial symmetric around* a, for some $a \in \mathbb{R}^d$, iff $X - a \stackrel{d}{=} a - X$.

Example: An elliptically distributed random vector $X \sim E_d(\mu, \Sigma, \psi) \in \mathbb{R}^d$ is radial symmetric around μ .

Definition: (Radial symmetry of copulas) A copula *C* is called radial symmetric iff

$$(U_1 - 0.5, \dots, U_d - 0.5) \stackrel{d}{=} (0.5 - U_1, \dots, 0.5 - U_d) \iff U \stackrel{d}{=} 1 - U,$$

where (U_1, U_2, \dots, U_d) is a random vector with distribution function C. For a radial symmetric copula $C = \hat{C}$ holds.

Example: Elliptical copulas are radial symmetric.

The Gumbel and Clayton Copulas are not radial symmetric. Why?

Not every copula has a density function. For example the co-monotony copula M and the anti-monotony copula W do not have a density function.

Not every copula has a density function. For example the co-monotony copula M and the anti-monotony copula W do not have a density function.

If the density function c of a copula C exists, then we have

$$c(u_1, u_2, \ldots, u_d) = \frac{\partial C(u_1, u_2, \ldots, u_d)}{\partial u_1 \partial u_2 \ldots \partial u_d}.$$

Not every copula has a density function. For example the co-monotony copula M and the anti-monotony copula W do not have a density function.

If the density function c of a copula C exists, then we have

$$c(u_1, u_2, \ldots, u_d) = \frac{\partial C(u_1, u_2, \ldots, u_d)}{\partial u_1 \partial u_2 \ldots \partial u_d}.$$

Let C be the copula of a distribution F with marginal distributions F_1, \ldots, F_d . By differentiating

$$C(u_1,\ldots,u_d)=F(F_1^{\leftarrow}(u_1),\ldots,F_d^{\leftarrow}(u_d))$$

we obtain the density c of C:

$$c(u_1,\ldots,u_d)=\frac{f(F_1^{-1}(u_1),\ldots,F_d^{-1}(u_d))}{f_1(F_1^{-1}(u_1))\ldots f_d(F_d^{-1}(u_d))}$$

where f is the density function of F, f_i are the marginal density functions, and F_i^{-1} are the inverse functions of F_i , for $1 \le i \le d$,

Exchangeability

Exchangeability

Definition:

A random vector X is called 'exchangeable iff

$$(X_1,\ldots,X_d)\stackrel{d}{=}(X_{\pi(1)},\ldots,X_{\pi(d)})$$
 for any permutation $(\pi(1),\pi(2),\ldots,\pi(d))$ of $(1,2,\ldots,d)$.

A copula C is called 'exchangeable iff C is the distribution function of an exchangeable random vector (with uniform marginal distributions on [0,1]).

Exchangeability

Definition:

A random vector X is called 'exchangeable iff

$$(X_1,\ldots,X_d)\stackrel{d}{=}(X_{\pi(1)},\ldots,X_{\pi(d)})$$
 for any permutation $(\pi(1),\pi(2),\ldots,\pi(d))$ of $(1,2,\ldots,d)$.

A copula C is called 'exchangeable iff C is the distribution function of an exchangeable random vector (with uniform marginal distributions on [0,1]).

For such a copula $C(u_1, u_2, \ldots, u_d) = C(u_{\pi(1)}, u_{\pi(2)}, \ldots, u_{\pi(d)})$ holds for any permutation $(\pi(1), \pi(2), \ldots, \pi(d))$ of $(1, 2, \ldots, d)$.

Exchangeability

Definition:

A random vector X is called 'exchangeable iff

$$(X_1,\ldots,X_d)\stackrel{d}{=}(X_{\pi(1)},\ldots,X_{\pi(d)})$$
 for any permutation $(\pi(1),\pi(2),\ldots,\pi(d))$ of $(1,2,\ldots,d)$.

A copula C is called 'exchangeable iff C is the distribution function of an exchangeable random vector (with uniform marginal distributions on [0,1]).

For such a copula $C(u_1, u_2, \ldots, u_d) = C(u_{\pi(1)}, u_{\pi(2)}, \ldots, u_{\pi(d)})$ holds for any permutation $(\pi(1), \pi(2), \ldots, \pi(d))$ of $(1, 2, \ldots, d)$.

Examples of exchangeable copulas:

Gumbel, Clayton, and also the Gaussian copula C_P^{Ga} and the t-Copula $C_{\nu,P}^t$, if P is an equicorrelation matrix, i.e. $R=\rho J_d+(1-\rho)I_d$.

 $J_d \in \mathbb{R}^{d \times d}$ is a matrix consisting only of ones, and $I_d \in \mathbb{R}^{d \times d}$ is the d-dimensional identity matrix.

Exchangeability

Definition:

A random vector X is called 'exchangeable iff

$$(X_1,\ldots,X_d)\stackrel{d}{=}(X_{\pi(1)},\ldots,X_{\pi(d)})$$
 for any permutation $(\pi(1),\pi(2),\ldots,\pi(d))$ of $(1,2,\ldots,d)$.

A copula C is called 'exchangeable iff C is the distribution function of an exchangeable random vector (with uniform marginal distributions on [0,1]).

For such a copula $C(u_1, u_2, \ldots, u_d) = C(u_{\pi(1)}, u_{\pi(2)}, \ldots, u_{\pi(d)})$ holds for any permutation $(\pi(1), \pi(2), \ldots, \pi(d))$ of $(1, 2, \ldots, d)$.

Examples of exchangeable copulas:

Gumbel, Clayton, and also the Gaussian copula C_P^{Ga} and the t-Copula $C_{\nu,P}^t$, if P is an equicorrelation matrix, i.e. $R=\rho J_d+(1-\rho)I_d$. $J_d\in\mathbb{R}^{d\times d}$ is a matrix consisting only of ones, and $I_d\in\mathbb{R}^{d\times d}$ is the

 $J_d \in \mathbb{R}^{a \times a}$ is a matrix consisting only of ones, and $I_d \in \mathbb{R}^{a \times a}$ is the d-dimensional identity matrix.

For bivariate exchangeable copulas we have:

$$P(U_2 \leq u_2 | U_1 = u_1) = P(U_1 \leq u_2 | U_2 = u_1).$$

Theorem: Let $(X_1, X_2)^T$ be a normally distributed random vector. Then $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Theorem: Let $(X_1, X_2)^T$ be a normally distributed random vector. Then $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and let C_{ρ}^{Ga} be a Gaussian copula, where ρ is the linear correlation coefficient of X_1 and X_2 . The $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Theorem: Let $(X_1, X_2)^T$ be a normally distributed random vector. Then $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and let C_{ρ}^{Ga} be a Gaussian copula, where ρ is the linear correlation coefficient of X_1 and X_2 . The $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Theorem: Let $(X_1, X_2)^T \sim t_2(0, \nu, R)$ be a random vector with a t-distribution and ν degrees of freedom, expectation 0 and linear correlation matrix R. For $R_{12} > -1$ we have

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left(\sqrt{\nu + 1} \frac{\sqrt{1 - R_{12}}}{\sqrt{1 + R_{12}}} \right)$$

Theorem: Let $(X_1, X_2)^T$ be a normally distributed random vector. Then $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and let C_ρ^{Ga} be a Gaussian copula, where ρ is the linear correlation coefficient of X_1 and X_2 . The $\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 0$ holds.

Theorem: Let $(X_1, X_2)^T \sim t_2(0, \nu, R)$ be a random vector with a t-distribution and ν degrees of freedom, expectation 0 and linear correlation matrix R. For $R_{12} > -1$ we have

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left(\sqrt{\nu + 1} \frac{\sqrt{1 - R_{12}}}{\sqrt{1 + R_{12}}} \right)$$

The proof is similar to the proof of the analogous theorem about the Gaussian copulas.

Hint:

$$|X_2|X_1 = x \sim \left(\frac{\nu+1}{\nu+x^2}\right)^{1/2} \frac{X_2 - \rho x}{\sqrt{1-\rho^2}} \sim t_{\nu+1}$$

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and a t-copula $C_{\nu,R}^t$ with ν degrees of freedom and and correlation matrix R. Then we have

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left(\sqrt{\nu + 1} \frac{\sqrt{1 - R_{12}}}{\sqrt{1 + R_{12}}} \right).$$

Corollary: Let $(X_1,X_2)^T$ be a random vector with continuous marginal distributions and a t-copula $C^t_{\nu,R}$ with ν degrees of freedom and and correlation matrix R. Then we have $\lambda_U(X_1,X_2)=\lambda_L(X_1,X_2)=2\overline{t}_{\nu+1}\left(\sqrt{\nu+1}\frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$.

Theorem: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and a Gaussian copula C_{ρ}^{Ga} , where ρ is the linear correlation coefficient of X_1 and X_2 . Then we have $\rho_{\tau}(X_1, X_2) = \frac{2}{\pi} \arcsin \rho$ und $\rho_{\mathcal{S}}(X_1, X_2) = \frac{6}{\pi} \arcsin \frac{\rho}{2}$.

Corollary: Let $(X_1,X_2)^T$ be a random vector with continuous marginal distributions and a t-copula $C^t_{\nu,R}$ with ν degrees of freedom and and correlation matrix R. Then we have $\lambda_U(X_1,X_2)=\lambda_L(X_1,X_2)=2\overline{t}_{\nu+1}\left(\sqrt{\nu+1}\frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$.

Theorem: Let $(X_1,X_2)^T$ be a random vector with continuous marginal distributions and a Gaussian copula C_{ρ}^{Ga} , where ρ is the linear correlation coefficient of X_1 and X_2 . Then we have $\rho_{\tau}(X_1,X_2)=\frac{2}{\pi}\arcsin\rho$ und $\rho_{S}(X_1,X_2)=\frac{6}{\pi}\arcsin\frac{\rho}{2}$.

Theorem: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with continuous marginal distributions. Then the following holds $\rho_{\tau}(X_i, X_j) = \frac{2}{\pi} \arcsin R_{ij}$, with $R_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}}$ for $i, j = 1, 2, \ldots, d$.

Corollary: Let $(X_1,X_2)^T$ be a random vector with continuous marginal distributions and a t-copula $C^t_{\nu,R}$ with ν degrees of freedom and and correlation matrix R. Then we have $\lambda_U(X_1,X_2)=\lambda_L(X_1,X_2)=2\overline{t}_{\nu+1}\left(\sqrt{\nu+1}\frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$.

Theorem: Let $(X_1,X_2)^T$ be a random vector with continuous marginal distributions and a Gaussian copula C_{ρ}^{Ga} , where ρ is the linear correlation coefficient of X_1 and X_2 . Then we have $\rho_{\tau}(X_1,X_2)=\frac{2}{\pi}\arcsin\rho$ und $\rho_{S}(X_1,X_2)=\frac{6}{\pi}\arcsin\frac{\rho}{2}$.

Theorem: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with continuous marginal distributions. Then the following holds $\rho_{\tau}(X_i, X_j) = \frac{2}{\pi} \arcsin R_{ij}$, with $R_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}}$ for $i, j = 1, 2, \ldots, d$.

Corollary: Let $(X_1,X_2)^T$ be a random vector with continuous marginal distributions and an elliptical copula $C_{\mu,\Sigma,\psi}^E$. Then we have $\rho_{\tau}(X_1,X_2)=\frac{2}{\pi}\arcsin R_{12}$, with $R_{12}=\frac{\Sigma_{12}}{\sqrt{\Sigma_{11}\Sigma_{22}}}$.

Corollary: Let $(X_1,X_2)^T$ be a random vector with continuous marginal distributions and a t-copula $C^t_{\nu,R}$ with ν degrees of freedom and and correlation matrix R. Then we have $\lambda_U(X_1,X_2)=\lambda_L(X_1,X_2)=2\overline{t}_{\nu+1}\left(\sqrt{\nu+1}\frac{\sqrt{1-R_{12}}}{\sqrt{1+R_{12}}}\right)$.

Theorem: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and a Gaussian copula C_{ρ}^{Ga} , where ρ is the linear correlation coefficient of X_1 and X_2 . Then we have $\rho_{\tau}(X_1, X_2) = \frac{2}{\pi} \arcsin \rho$ und $\rho_{S}(X_1, X_2) = \frac{6}{\pi} \arcsin \frac{\rho}{2}$.

Theorem: Let $X \sim E_d(\mu, \Sigma, \psi)$ be an elliptically distributed random vector with continuous marginal distributions. Then the following holds $\rho_{\tau}(X_i, X_j) = \frac{2}{\pi} \arcsin R_{ij}$, with $R_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{jj}}}$ for $i, j = 1, 2, \ldots, d$.

Corollary: Let $(X_1, X_2)^T$ be a random vector with continuous marginal distributions and an elliptical copula $C^E_{\mu, \Sigma, \psi}$. Then we have $\rho_{\tau}(X_1, X_2) = \frac{2}{\pi} \arcsin R_{12}$, with $R_{12} = \frac{\Sigma_{12}}{\sqrt{\Sigma_{11}\Sigma_{22}}}$.

See McNeil et al. (2005) for a proof of the three last results.

