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F(x1, %2, ..., xq) = C(Fi(x1), Fa(x2), . . ., Fa(xq).

Lemma: For any copula C and its survival copula C the following holds

Cl—u,1— ) =1—u —up+ Cur, u).
Theorem: Let (X1, X2)" be a random vector with continuous marginal
distributions and a unique copula C. The following equalities hold

Au(Xi, Xo) = limy_yy— 2220600 ang A (X, Xo) = limyyor SE4),

provided that the limits exist.
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Exmaples of copulas:
The Gumbel family of copulas:

CSY(u1, w) = exp (— [(=Inu)? + (—1In uz)9]1/9> ,0>1
We have Ay =2 —2Y¢ ) =0.
The Clayton family of copulas:
i, w) = (U + 03 = 1), 6> 0

We have \y =0, A\, = 271/9.
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Theorem:(Stochastic representation)

A d-dimensional random vector X is elliptically distributed,

X ~ Eq(p, X,v) with rang(X) = k, iff there exist a matrix A € R?*¥,
ATA =¥, a nonnegative r.v. R and a k-dimensional random vector U
uniformly distributed on the unit ball S¥~1 = {z € R*: 27z = 1}, such
that R and U are independent and X 4 u+ RAU.

Remark: An elliptically distributed random vector X ist radial symmetric,

i.e.Xfugqu.
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Let CS? be the copula of a d-dimensional normal distribution with
correlation matrix R. Then C§?(u) = ¢%(¢~(u1), ..., ¢ (ug)) holds,
where ¢% is the c.d.f. of a d-dimensional normal distribution with
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standard normal distribution function.

Since the normal distribution is elliptic, the Gaussian copula C,g;a is by
definition an elliptic copula.

In the bivariate case we have:
(2 2
CG (11, un) f¢ (u1) f¢ Y(u) 1 Lo exp{ (X12(§lix:);<§+xz) } dxydxo,

where p € (—1,1).
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Definition: Let X < 4+ YEAZ ~ ty(a, 1, T), where p € R?, 0 € NN,

a>1 S~x2, Ac R  with AA* = X, Z ~ Ni(0, ), and S and Z
independent. We say that X has a d-dimensional t-distribution with
expectation y (for oo > 1) and covariance matrix Cov(X) = —%5¥.
(o > 2 should hold, Cov(X) does not exist for o < 2.)

)

Definition: The (unique) copula Cé)R of X is called t-copula:

ar(t) = 0 p(t (un), o, t57 (ug)).

5 . , , .
Rj = \/ﬁ i,j=1,2...,d, is the correlation matrix of AZ.

tg,R is the cdf of %Y , where S ~ x2, Z ~ Ni(0,R), and S, Y are
independent. t, are the marginal distributions of tg’R.
In the bivariate case (d = 2):

to ()t () a2

1 X2 —2px1x0 +x3 ) ?
dxi1d
27(1— )12 { T a2 ace

— 0o — 00

Co r(u1, u2) =

for p € (—1,1). Ryp is the linear correlation coefficient of the
corresponding bivariate t,-distribution for o > 2.
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Definition: (Radial symmetry)
A d-dimensional random vector X (or a d-variate distribution function) is

. . . d
called radial symmetric around a, for some a € ]Rd, iff X —a=a—X.

Example: An elliptically distributed random vector
X~ E4(p, X, 9) € RY is radial symmetric around pu.

Definition: (Radial symmetry of copulas)
A copula C is called radial symmetric iff

(Uy—05,...,Us—05) 2 (05— Uy,...,05—Uy) = UZL1-U,

where (Uy, Us, ..., Uy) is a random vector with distribution function C.
For a radial symmetric copula C = C holds.

Example: Elliptical copulas are radial symmetric.

The Gumbel and Clayton Copulas are not radial symmetric. Why?
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The density function of a copula

Not every copula has a density function. For example the co-monotony
copula M and the anti-monotony copula W do not have a density
function.

If the density function ¢ of a copula C exists, then we have

8C(u17 us,..., Ud)
c(ug, uo, ..., ug) = O duy ... 0ug

Let C be the copula of a distribution F with marginal distributions
Fi,...,F4. By differentiating

Clu, ... uqg) = F(FF (1), ..., Fi (uq))
we obtain the density ¢ of C:

_ (AT N(w), - Pyt (ua))
A(F (). fa(Fg (ua))

where f is the density function of F, f; are the marginal density
functions, and F,-_1 are the inverse functions of F;, for 1 </ < d,

c(ur, ..., uq)
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(m(1),7(2),...,7(d)) of (1,2,...,d).

A copula C is called ‘exchangeable iff C is the distribution function of an
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[0, 1]).

For such a copula C(uy, ta, ..., uq) = C(Ux(1), Ur(2), - - » Un(d)) holds for
any permutation (7(1),7(2),...,w(d)) of (1,2,...,d).

Examples of exchangeable copulas:

Gumbel, Clayton, and also the Gaussian copula C§5? and the t-Copula
CriP' if P is an equicorrelation matrix, i.e. R = pJg + (1 — p)ly.

Jy € R¥*? is a matrix consisting only of ones, and Iy € IR?*9 is the
d-dimensional identity matrix.

For bivariate exchangeable copulas we have:

P(U2 S U2|U1 = U1) = P(U1 S U2|U2 = Ul).
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Theorem: Let (Xl,XQ)T be a normally distributed random vector. Then
Au(X1, Xo) = A\ (X1, X2) = 0 holds.

Corollary: Let (X;,X2)" be a random vector with continuous marginal
distributions and let Cfa be a Gaussian copula, where p is the linear
correlation coefficient of X; and X,. The Ay(X1, Xo) = Ar(Xy,X2) =0
holds.

Theorem: Let (X1, X2)™ ~ t(0, v, R) be a random vector with a
t-distribution and v degrees of freedom, expectation 0 and linear
correlation matrix R. For Rj» > —1 we have

- 1-R
Au(Xi, Xo) = Au(Xi, Xo) = 2t (m\/\/%)

The proof is similar to the proof of the analogous theorem about the
Gaussian copulas.
Hint:

Xo| X <V+1>1/2X2—PX
2| X1 =X~ ~ tyy1
v+ x? V1= p? *
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Corollary: Let (X;,X2)" be a random vector with continuous marginal
distributions and a t-copula C! p with v degrees of freedom and and
correlation matrix R. Then we have

(X, Xe) = Au(X1, Xe) = 241 (Vi + TYARR ).
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Theorem: Let X ~ E4(u, X, ) be an elliptically distributed random
vector with continuous marginal distributions. Then the following holds
pr(Xi, X;) = 2 arcsin Ry, with R = ?jz fori,j=1,2,...,d.

i & jj
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See McNeil et aI. (2005) for a proof of the three last results.




