Risk theory and risk management in actuarial science Winter term 2016/17

5th work sheet

28. Archimedian Copulas

(a) Show that for every $\theta \in \mathbb{R}$ the function $\phi_{\theta}^{Fr}(t) = -\ln\left(\frac{e^{-\theta t}-1}{e^{-\theta}-1}\right)$ generates an Archmedian copula, the so-called Frank copula $C_{\theta}^{Fr}: [0,1]^2 \to [0,1]$. Check that the following equality holds $\forall u_1, u_2 \in [0,1]:$

$$C_{\theta}^{Fr}(u_1, u_2) = -\frac{1}{\theta} \ln(1 + \frac{(\exp(-\theta u_1) - 1)(\exp(-\theta u_2) - 1)}{\exp(-\theta) - 1}, \theta \in \mathbb{R}.$$

(b) Show that for every $\theta \ge 0$ and for every $\delta \ge 1$ the function $\phi_{\theta,\delta}^{GC}(t) = \theta^{-\delta}(t^{-\theta}-1)^{\delta}$ generates an Archmedian copula, the so-called generalized Clayton copula $C_{\theta,\delta}^{GC}: [0,1]^2 \to [0,1]$. Check that the following equality holds $\forall u_1, u_2 \in [0,1]$:

$$C_{\theta,\delta}^{GC}(u_1, u_2) = \{ [(u_1^{-\theta} - 1)^{\delta} + (u_2^{-\theta} - 1)^{\delta}]^{1/\delta} + 1 \}^{-1/\theta}, \ \theta \ge 0, \lambda \ge 1.$$

- (c) Compute Kendall's tau ρ_{τ} as well as the coefficients λ_U , λ_L of the upper and lower tail dependency for the copulay C_{θ}^{Gu} , C_{θ}^{Cl} , C_{θ}^{Fr} and $C_{\theta,\delta}^{GC}$, respectively, and summarize the results in a table. (The coefficients which have been computed in the lecture do not need to be recomputed).
- (d) Show that C_{θ}^{Gu} tends to the independence copula Π if θ tends to 1 and to the upper Fréchet bound M if θ tends to infinity. In this case we say that the lower limit of the Gumbel copula is the independence copula Π and its upper limit is the Fréchet upper bound M. Analogously show that the lower limit of the Clayton copula is the Fréchet lower bound W and its upper limit is the Fréchet upper bound M. Finally show that the Frank copula has the same lower and upper limits as the Clayton copula, respectively.
- 29. (a) Let $(X_1, X_2)^T$ be a *t*-distributed random vector with ν degrees of freedom, expected value (0, 0)and linear correlation coefficient matrix ρ : $(X_1, X_2)^T \sim t_2(\vec{0}, \nu, R)$ where R is 2×2 matrix with 1 on the diagonal and ρ outside the diagonal. Show that the following equality holds for $\rho > -1$:

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left(\sqrt{\nu+1} \frac{\sqrt{1-\rho}}{\sqrt{1+\rho}} \right)$$

Hint: Use the fact (no need to prove it!) that the X_2 conditioned upon $X_1 = x$ has a tdistribution as follows

$$X_2|X_1 = x \sim \left(\frac{\nu+1}{\nu+x^2}\right)^{1/2} \frac{X_2 - \rho x}{\sqrt{1-\rho^2}} \sim t_{\nu+1}.$$

Moreoever use the stochatic representation of the *t*-distribution of (X_1, x_2) as $\mu + \sqrt{W}AZ$, where Z is bivariate standard normally distributed and W is such that $\frac{\mu}{7}W \sim chi_{\nu}^2$ while being independent on Z, cf. lecture.

(b) Apply (a) to conclude that for a random vector with continuous marginal distributions $(X_1, X_2)^T$ and a *t*-copula $C_{\nu,R}^t$ with ν degrees of freedom and a correlation matrix R as in (a) the following equalities holds:

$$\lambda_U(X_1, X_2) = \lambda_L(X_1, X_2) = 2\bar{t}_{\nu+1} \left(\sqrt{\nu+1} \frac{\sqrt{1-\rho}}{\sqrt{1+\rho}} \right) \,.$$

30. A bank has a loan portfolio of 100 loans. Let X_k be the default indicator for loan k such that $X_k = 1$ in case of default and 0 otherwise, for $k \in \{1, ..., 100\}$.

- (a) Suppose that X_k are independent and identically distributed with $P(X_k = 1) = 0.01$. Compute the expected value E(N) of the number N of defaults and P(N = k) for $k \in \{0, 1, ..., 100\}$.
- (b) Consider the risk factor Z which reflects the state of the economy. Suppose that conditional on Z the default indicators are independent and identically distributed with $P(X_k = 1|Z) = Z$, where P(Z = 0.01) = 0.9 and P(Z = 0.11) = 0.1. Compute the expected value E(N) where N is defined as in (a).
- (c) Consider the risk factor Z which reflects the state of the economy. Suppose that conditional on Z the default indicators are independent and identically distributed with $P(X_k = 1|Z) = Z^9$, where Z is uniformly distributed on (0, 1). Compute the expected value E(N) where N is defined as in (a).