Risk theory and risk management in actuarial science Winter term 2016/17
 4th work sheet

20. Let the random variables $X_{i}, i=1,2$, be such that $X_{1} \sim \operatorname{Exp}(\lambda)$ and $X_{2}=X_{1}$, where $\operatorname{Exp}(\lambda)$ is the exponential distribution with parameter λ. Consider the strictly increasing functions $t_{i}: \mathbb{R} \rightarrow \mathbb{R}$, $i=1,2$, with $t_{1}(x)=x$ and $t_{2}(x)=x^{2}$. Show that the following equalities for the linear correlation coefficient ρ_{L} hold:

$$
\rho_{L}\left(X_{1}, X_{2}\right)=1 \text { and } \rho_{L}\left(t_{1}\left(X_{1}\right), t_{2}\left(X_{2}\right)\right)=\frac{2}{\sqrt{5}} .
$$

21. Let the random variables $X_{i}, i=1,2$, be such that $X_{1} \sim \operatorname{Exp}(\lambda)$ and $X_{2}=X_{1}^{2}$, where $\operatorname{Exp}(\lambda)$ is the exponential distribution with parameter λ. Determine the coefficients of the lower and the upper tail dependence $\lambda_{L}\left(X_{1}, X_{2}\right), \lambda_{U}\left(X_{1}, X_{2}\right)$, respectively, and conclude that X_{1} and X_{2} have both a lower and an upper tail dependence. Compute also the coefficient of the linear correlation $\rho_{L}\left(X_{1}, X_{2}\right)$, compare the three computed dependence measures and comment on your results.
22. Show that $V a R_{\alpha}, \alpha \in(0,1)$, is not a coherence risk measure (in general). To this end you can analyze the properties of $V a R_{\alpha}(X)$ for a binomially distributed random variable X with $X \sim B(p, n)$, where $B(p, n)$ is a binomial distribution with parameters $p \in(0,1)$ and $n \in \mathbb{N}$.
23. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R})=\mathbb{R}$ and let $h \leftarrow: \mathbb{R} \rightarrow \mathbb{R}$ be generalized inverse function of h. Show that the following statements hold.
(a) h is continuous if and only if $h \leftarrow$ is strictly monotone increasing.
(b) h is strictly monotone increasing if and only if $h \leftarrow$ is continuous.
(c) $h^{\leftarrow}(h(x)) \leq x$
(d) If h is strictly monotone increasing then $h^{\leftarrow}(h(x))=x$.
(e) h is continuous if and only if $h\left(h^{\leftarrow}(y)\right)=y$.
24. Let X be a random variable with distribution function F. Show that $F^{\leftarrow}(F(X))$ is almost surely equal to X, i.e. the equality $\operatorname{Prob}\left(F^{\leftarrow}(F(X))=X\right)=1$ holds.
25. Show that the Fréchet lower bound W_{d} is not a copula for $d \geq 3$.

Hint: Show that the rectangle inequality

$$
\sum_{k_{1}=1}^{2} \sum_{k_{2}=1}^{2} \ldots \sum_{k_{d}=1}^{2}(-1)^{k_{1}+k_{2}+\ldots+k_{d}} W_{d}\left(u_{1 k_{1}}, u_{2 k_{2}}, \ldots, u_{d k_{d}}\right) \geq 0
$$

where $\left(a_{1}, a_{2}, \ldots, a_{d}\right),\left(b_{1}, b_{2}, \ldots, b_{d}\right) \in[0,1]^{d}$ with $a_{k} \leq b_{k}$ and $u_{k 1}=a_{k}$ und $u_{k 2}=b_{k}$ for all $k \in\{1,2, \ldots, d\}$, is violated if $d \geq 3$ and $a_{i}=\frac{1}{2}, b_{i}=1$, for $i=1,2, \ldots, d$.
26. Let $X_{i}, i=1,2$, be two lognormally distributed random variables with $X_{1} \sim \operatorname{Lognormal}(0,1)$ und $X_{2} \sim \operatorname{Lognormal}\left(0, \sigma^{2}\right), \sigma>0$. Compute $\rho_{L, \min }\left(X_{1}, X_{2}\right)$ und $\rho_{L, \max }\left(X_{1}, X_{2}\right)$ in dependence of σ and compare their values for different values of $\sigma>0$.
27. Construct two random vectors $\left(X_{1}, X_{2}\right)^{T}$ and $\left(Y_{1}, Y_{2}\right)^{T}$ with different joint distributions $F_{\left(X_{1}, X_{2}\right)}$, $F_{\left(Y_{1}, Y_{2}\right)}$, respectively, such that (a) all $X_{1}, X_{2}, Y_{1}, Y_{2}$ are standard normally distributed, i.e. $X_{1}, X_{2}, Y_{1}, Y_{2} \sim N(0,1)$, (b) the two X-variables and the two Y-variables are uncorrelated, i.e. $\rho_{L}\left(X_{1}, X_{2}\right)=0, \rho_{L}\left(Y_{1}, Y_{2}\right)=0$, and (c) the α-quantiles of the corresponding sums are different, i.e. $F_{X_{1}+X_{2}}^{\overleftarrow{ }}(\alpha) \neq F_{Y_{1}+Y_{2}}^{\leftarrow}(\alpha)$ holds for some $\alpha \in(0,1)$, where $F_{X_{1}+X_{2}}, F_{Y_{1}+Y_{2}}$ are the distributions of $X_{1}+X_{2}$ and $Y_{1}+Y_{2}$, respectively.
Conclude that in general it is not possible to draw conclusions about the loss of a portfolio if the loss distributions of the single assets in portfolio and their mutual linear correlation coefficients are known.

