Risk theory and risk management in actuarial science Winter term 2016/17

4th work sheet

20. Let the random variables X_i , i = 1, 2, be such that $X_1 \sim Exp(\lambda)$ and $X_2 = X_1$, where $Exp(\lambda)$ is the exponential distribution with parameter λ . Consider the strictly increasing functions $t_i: \mathbb{R} \to \mathbb{R}$, i = 1, 2, with $t_1(x) = x$ and $t_2(x) = x^2$. Show that the following equalities for the linear correlation coefficient ρ_L hold:

$$\rho_L(X_1, X_2) = 1 \text{ and } \rho_L(t_1(X_1), t_2(X_2)) = \frac{2}{\sqrt{5}}$$

- 21. Let the random variables X_i , i = 1, 2, be such that $X_1 \sim Exp(\lambda)$ and $X_2 = X_1^2$, where $Exp(\lambda)$ is the exponential distribution with parameter λ . Determine the coefficients of the lower and the upper tail dependence $\lambda_L(X_1, X_2)$, $\lambda_U(X_1, X_2)$, respectively, and conclude that X_1 and X_2 have both a lower and an upper tail dependence. Compute also the coefficient of the linear correlation $\rho_L(X_1, X_2)$, compare the three computed dependence measures and comment on your results.
- 22. Show that VaR_{α} , $\alpha \in (0, 1)$, is not a coherence risk measure (in general). To this end you can analyze the properties of $VaR_{\alpha}(X)$ for a binomially distributed random variable X with $X \sim B(p, n)$, where B(p, n) is a binomial distribution with parameters $p \in (0, 1)$ and $n \in \mathbb{N}$.
- 23. Let $h: \mathbb{R} \to \mathbb{R}$ be a monotone increasing function with $h(\mathbb{R}) = \mathbb{R}$ and let $h^{\leftarrow}: \mathbb{R} \to \mathbb{R}$ be generalized inverse function of h. Show that the following statements hold.
 - (a) h is continuous if and only if h^{\leftarrow} is strictly monotone increasing.
 - (b) h is strictly monotone increasing if and only if h^{\leftarrow} is continuous.
 - (c) $h^{\leftarrow}(h(x)) \leq x$
 - (d) If h is strictly monotone increasing then $h^{\leftarrow}(h(x)) = x$.
 - (e) h is continuous if and only if $h(h^{\leftarrow}(y)) = y$.
- 24. Let X be a random variable with distribution function F. Show that $F^{\leftarrow}(F(X))$ is almost surely equal to X, i.e. the equality $Prob(F^{\leftarrow}(F(X)) = X) = 1$ holds.
- 25. Show that the Fréchet lower bound W_d is not a copula for $d \ge 3$.

Hint: Show that the rectangle inequality

$$\sum_{k_1=1}^2 \sum_{k_2=1}^2 \dots \sum_{k_d=1}^2 (-1)^{k_1+k_2+\dots+k_d} W_d(u_{1k_1}, u_{2k_2}, \dots, u_{dk_d}) \ge 0,$$

where (a_1, a_2, \ldots, a_d) , $(b_1, b_2, \ldots, b_d) \in [0, 1]^d$ with $a_k \leq b_k$ and $u_{k1} = a_k$ und $u_{k2} = b_k$ for all $k \in \{1, 2, \ldots, d\}$, is violated if $d \geq 3$ and $a_i = \frac{1}{2}$, $b_i = 1$, for $i = 1, 2, \ldots, d$.

- 26. Let X_i , i = 1, 2, be two lognormally distributed random variables with $X_1 \sim Lognormal(0, 1)$ und $X_2 \sim Lognormal(0, \sigma^2)$, $\sigma > 0$. Compute $\rho_{L,min}(X_1, X_2)$ und $\rho_{L,max}(X_1, X_2)$ in dependence of σ and compare their values for different values of $\sigma > 0$.
- 27. Construct two random vectors $(X_1, X_2)^T$ and $(Y_1, Y_2)^T$ with different joint distributions $F_{(X_1, X_2)}$, $F_{(Y_1, Y_2)}$, respectively, such that (a) all X_1, X_2, Y_1, Y_2 are standard normally distributed,

i.e. $X_1, X_2, Y_1, Y_2 \sim N(0, 1)$, (b) the two X-variables and the two Y-variables are uncorrelated, i.e. $\rho_L(X_1, X_2) = 0, \rho_L(Y_1, Y_2) = 0$, and (c) the α -quantiles of the corresponding sums are different, i.e. $F_{X_1+X_2}^{\leftarrow}(\alpha) \neq F_{Y_1+Y_2}^{\leftarrow}(\alpha)$ holds for some $\alpha \in (0, 1)$, where $F_{X_1+X_2}, F_{Y_1+Y_2}$ are the distributions of $X_1 + X_2$ and $Y_1 + Y_2$, respectively.

Conclude that in general it is not possible to draw conclusions about the loss of a portfolio if the loss distributions of the single assets in portfolio and their mutual linear correlation coefficients are known.