Risk theory and risk management in actuarial science Winter term 2016/17

1st work sheet

- 1. Let $L \sim N(\mu, \sigma^2)$. Show that $VaR_{\alpha}(L) = \mu + \sigma q_{\alpha}(\Phi) = \mu + \sigma \Phi^{-1}(\alpha)$ holds, where Φ is the distribution function of a random variable $X \sim N(0, 1)$. Further show that $CVaR_{\alpha}(L) = \frac{\phi(\Phi^{-1}(\alpha))}{1-\alpha}$ holds, where ϕ is the density function of X as above.
- 2. Consider a portfolio consisting of 5 pieces of an asset A. The today's price of A is $S_0 = 100$. The daily logarithmic returns are i.i.d.: $X_1 = \ln \frac{S_1}{S_0}, X_2 = \ln \frac{S_2}{S_1}, \ldots \sim N(0, 0.01)$. Let L_1 be the 1-day portfolio loss in the time interval (today, tomorrow).
 - (a) Compute $VaR_{0.99}(L_1)$.
 - (b) Compute $VaR_{0.99}(L_{100})$ and $VaR_{0.99}(L_{100}^{\Delta})$, where L_{100} is the 100-day portfolio loss over a horizon of 100 days starting with today. L_{100}^{Δ} is the linearization of the above mentioned 100-day PF-portfolio loss. Compare the two values and comment on the results.

Hint: Use the equality $\Phi^{-1}(0.99) \approx 2.3$, where Φ is the distribution function of a random variable $X \sim N(0, 1)$.

- 3. (a) Let $L \sim Exp(\lambda)$. Compute $CVaR_{\alpha}(L)$.
 - (b) Let the distribution function F_L of the loss function L be given by $F_L(x) = 1 (1 + \gamma x)^{-1/\gamma}$ for $x \ge 0$ and some parameter $\gamma \in (0, 1)$ (this is the generalized Pareto distribution). Compute $CVaR_{\alpha}(L)$.
- 4. Let the loss L be distributed according to the Students t-distribution with $\nu > 1$ degrees of freedom. The density function of L is given as

$$g_{\nu}(x) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\nu\pi}\Gamma(\nu/2)} \left(1 + \frac{x^2}{\nu}\right)^{-(\nu+1)/2}$$

Show that $CVaR_{\alpha}(L) = \frac{g_{\nu}(t_{\nu}^{-1}(\alpha))}{1-\alpha} \left(\frac{\nu + (t_{\nu}^{-1}(a))^2}{\nu - 1}\right)$, where t_{ν} is the distribution function of L.

- 5. Show that the following distributions are regularly varying:
 - (a) The Pareto distribution G_{α} with parameter α given as $G_{\alpha}(x) = 1 x^{-\alpha}$, for x > 1, where $\alpha > 0$. Show that $\bar{G}_{\alpha}(tx)/\bar{G}_{\alpha}(x) = x^{-\alpha}$ holds for t > 0, thus $\bar{G}_{\alpha} \in RV_{-\alpha}$.
 - (b) The Fréchet distribution Φ_{α} with parameter α given as $\Phi_{\alpha}(x) = \exp\{-x^{-\alpha}\}$ for x > 0 and $\Phi_{\alpha}(0) = 0$, where $\alpha > 0$. Show that $\lim_{x \to \infty} \bar{\Phi}_{\alpha}(x)/x^{-\alpha} = 1$, i.e. $\bar{\Phi}_{\alpha} \in RV_{-\alpha}$.
- 6. Show that for any distribution $F, F \in DA(G_2)$ if and only if $F \in DA(\Phi)$, where Φ is the standard normal distribution, $\Phi \sim N(0,1)$, DA stands for "Domain of attraction", and G_2 is the stable distribution with form parameter $\alpha = 2$ (and arbitrary parameters β and c).

Hint: Apply the Convergence to types theorem.

7. Prove the following characterization of the maximum domain of attraction of an extreme value distribution H (also fomulated in the lecture):

 $F \in MDA(H)$ with normalizing and centralizing constants $a_n > 0$, b_n , $n \in \mathbb{N}$, respectively, iff $\lim_{n\to\infty} n\bar{F}_n(a_nx+b) = -\ln(H(x))$, for all $x \in \mathbb{R}$.

8. (Poisson distribution)

Let $X \sim P(\lambda)$, i.e. $P(X = k) = e^{-\lambda} \lambda^k / k!$, $k \in \mathbb{N}_0$, for some parameter $\lambda > 0$. Show that there exists no extreme value distribution Z such that $X \in MDA(Z)$.

Hint: Use Leadbetter et al.'s Lemma as follows (cf. lecture). For any discrete non-negative distribution F with right end $x_F = +\infty$ (i.e. a random variable with distribution F can take arbitrarily large values), the following two statements are equivalent for every $\tau \in (0, \infty)$: a) there exists a sequence $u_n \in \mathbb{R}, n \in \mathbb{N}$ such that $\lim_{n\to\infty} n\bar{F}(u_n) = \tau$, and b) $\lim_{n\to\infty} \frac{\bar{F}(n)}{\bar{F}(n-1)} = 1$.

You don't need to prove the lemma.

9. (Maximum domain of attraction of the Fréchet distribution)

Show that the following distributions belong to the maximum domain of attraction $MDA(\Phi_{\alpha})$ of the Fréchet distribution Φ_{α} , for some $\alpha > 0$, and determine the normalizing and centralizing constants $a_n > 0$, b_n , for $n \in \mathbb{N}$, respectively.

- (a) The Pareto distribution with parameter $\alpha > 0$: $G_{\alpha}(x) = 1 x^{-\alpha}$, for x > 1.
- (b) The Cauchy distribution with density function $f(x) = (\pi(1+x^2))^{-1}, x \in \mathbb{R}$.
- (c) The Students distribution with parameter $\alpha \in \mathbb{N}$ and density function $f(x) = \frac{\Gamma((\alpha+1)/2)}{\sqrt{\alpha\pi}\Gamma(\alpha/2)(1+x^2/\alpha)^{(\alpha+1)/2}}, \alpha \in \mathbb{N}, x \in \mathbb{R}.$
- (d) The Loggamma distribution with parameters $\alpha, \beta > 0$ and density function $f(x) = \frac{\alpha^{\beta}}{\Gamma(\beta)} (\ln x)^{\beta-1} x^{-\alpha-1}$, for x > 1.
- 10. (Maximum domain of attraction of the Weibull ditribution)

Let $X \sim U(0,1)$ be uniformly distributed on [0,1]. Show that X belongs to the maximum domain of attraction of the Weibull distribution with parameter 1, i.e. $X \in MDA(\Psi_1)$, with normalizing constant $a_n = 1/n$, for $n \in \mathbb{N}$.

- 11. (Maximum domain of attraction of the Gumbel ditribution) Check whether the following distributions belong to the maximum domain of attraction $MDA(\Lambda)$ of the Gumbel distribution.
 - (a) The normal distribution $F(x) = (2\pi)^{-1/2} \exp\{-x^2/2\}, x \in \mathbb{R}.$
 - (b) The exponential distribution with density function $f(x) = \lambda^{-1} \exp\{-\lambda x\}$, x > 0, for some parameter $\lambda > 0$.
 - (c) The lognormal distribution with density function $f(x) = (2\pi x^2)^{-1/2} \exp\{-(\ln x)^2/2\}, x > 0.$
 - (d) The gamma distribution with density function $f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} \exp\{-\beta x\}, x > 0$, for some parameters $\alpha, \beta > 0$.