
Example 5 European call option (ECO)

Consider an ECO over an asset S with execution date T , price ST at
time T and strike price K.

Value of the ECO at time T : max{ST −K,0}

Price of ECO at time t < T : C = C(t, S, r, σ) (Black-Scholes model),
where S is the price of the asset, r is the interest rate and σ is the
volatility, all of them at time t.

Risk factors: Zn = (lnSn, rn, σn)T ;

Risk factor changes: Xn+1 = (lnSn+1 − lnSn, rn+1 − rn, σn+1 − σn)T

Portfolio value: Vn = C(tn, Sn, rn, σn) = C(tn, exp(Zn,1), Zn,2, Zn,3)

The linearized loss: L∆
n+1 = −(Ct∆t + CSSnXn+1,1 + CrXn+1,2 +

CσXn+1,3)

The greeks: Ct - theta, CS - delta, Cr - rho, Cσ - Vega
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Purpose of the risk management:

• Determination of the minimum regulatory capital:
i.e. the capital, needed to cover possible losses.

• As a management tool:
to determine the limits of the amount of risk a unit within the company may

take

Some basic risk measures (not based on the loss distribution)

• Notational amount: weighted sum of notational values of individual secu-

rities weighted by a prespecified factor for each asset class

e.g. in Basel I (1998):

Cooke Ratio= regulatory capital
risk-weighted sum

≥ 8%

Gewicht :=



















0%
for claims on governments and supranationals
(OECD)

20% claims on banks

50% claims on individual investors with mortgage securi-
ties

100% claims on the private sector

Disadvantages: no difference between long a short positions, does
not consider diversification effects
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• Coefficients of sensitivity with respect to risk factors

Portfolio value at time tn: Vn = f(tn, Zn),
Zn ist a Vektor of d risk factors

Sensitivity coefficients: fzi =
δf
δzi
(tn, Zn), 1 ≤ i ≤ d

Example: “The Greeks” of a portfolio are the sensitivity coeffi-
cients

Disadvantages: Assessment of risk arising due to simultaneous
change of different risk factors is difficult;
aggregation of risks arising in differnt markets is difficult ;

• Scenario based risk measures: Let n be the number of possible
risk factor changes (= szenarios).

Let χ = {X1, X2, . . . , XN} be the set of scenarios and l[n](·) the
portfolio loss operator.

Assign a weight wi to every scenario i, 1 ≤ i ≤ N

Portfolio risk:

Ψ[χ,w] = max{w1l[n](X1), w2l[n](X2), . . . , wN l[n](XN)}
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Example 6 SPAN ruled applied at CME (see Artzner et al., 1999)

Portfolio consists of many units of a certain future contract and many
put and call options on the same contract with the same maturity.

Computing SPAN Marge:

Scenarios i, 1 ≤ i ≤ 14:

Scenarios 1 to 8 Scenarios 9 to 14
Volatility Price of the future Volatility Price of the future

ր ր 1
3
∗Range ր ց 1

3
∗Range

ց ր 2
3
∗Range ց ց 2

3
∗Range

ր 3
3
∗Range ց 3

3
∗Range

−→

Scenarios i, i = 15,16 represent an extreme increase or decrease of
the future price, respectively.

wi =

{

1 1 ≤ i ≤ 14
0,35 15 ≤ i ≤ 16

An appropriate model (zB. Black-Scholes) is used to generate the
option prices in the different scenarios.
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• Risk measures based on the loss distribution

Let FL := FLn+1
be the loss distribution of Ln+1.

The parameter of FL will be estimated in terms of historical data,
either ddirectly oder by involving risk factors.

1. The standard deviation std(L) :=
√

σ2(FL)

It is used frequently in portfolio theory.

Disadvantages:

– STD exists only for distributions with E(F 2
L) <∞, not ap-

plicable to leptocurtic (“fat tailed”) loss distributions;

– gains and losses equally influence the STD.

Example 7 L1 ∼ N(0,2), L2 ∼ t4 (Student’s distribution with 4

degrees of freedom)

σ2(L1) = 2 and σ2(L2) = m
m−2 = 2 hold, where m is the

number of degrees of freedom, thus m = 2.

However the probability of losses is much larger for L2 than
for L1.

Plot the logarithm of the quotient ln[P (L2 > x)/P (L1 > x)]!
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2. Value at Risk (V aRα(L))

Definition 5 Let L be the loss distribution and α ∈ (0,1) a given
confindence level.

V aRα(L) is the smallest number l, such that P (L > l) ≤ 1 − α
holds.

V aRα(L) = inf{l ∈ IR:P (L > l) ≤ 1− α} =
inf{l ∈ IR: 1− FL(l) ≤ 1− α} = inf{l ∈ IR:FL(l) ≥ α}
BIS (Bank of International Settlements) suggests V aR0.99(L)
over a horizon of 10 days as a measure for the market risk of
a portfolio.

Definition 6 Let F :A → B be a monotone increasing function
(d.h. x ≤ y =⇒ F (x) ≤ F (y)). The function

F←:B → A ∪ {−∞,+∞}, y 7→ inf{x ∈ IR:F (x) ≥ y}
is called generalized inverse function of F .

Notice that inf ∅ =∞.

If F is strictly monotone increasing, then F−1 = F← holds.

Exercise 1 Compute F← for F : [0,+∞)→ [0,1] with

F (x) =

{

1/2 0 ≤ x < 1
1 1 ≤ x
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Definition 7 Let F : IR → IR be a monotone increasing function.
qα(F ) := inf{x ∈ IR:F (x) ≥ α} is called α-quantile of F .

For the loss function L and its distribution function F the following
holds:

V aRα(L) = qα(F ) = F←(α).

Example 8 Let L ∼ N(µ, σ2).
Then V aRα(L) = µ + σqα(Φ) = µ + σΦ−1(α) holds, where Φ is the
distribution function of a random variable X ∼ N(0,1).

Exercise 2 Consider a portfolio consisting of 5 pieces of an asset A.
The today’s price of A is S0 = 100. The daily logarithmic returns
are i.i.d.: X1 = ln S1

S0
, X2 = ln S2

S1
,. . . ∼ N(0,0.01). Let L1 be the 1-day

portfolio loss in the time interval (today, tomorrow).

(a) Compute V aR0.99(L1).

(b) Compute V aR0.99(L100) and V aR0.99(L∆
100), where L100 is the 100-

day portfolio loss over a horizon of 100 days starting with today.
L∆

100 is the linearization of the above mentioned 100-day PF-
portfolio loss.

Hint: For Z ∼ N(0,1) use the equality F−1Z (0.99) ≈ 2.3.
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3. Conditional Value at Risk (CV aRα(L)) (or Expected Shortfall (ES))

A disadvantage of VaR: It tells nothing about the amount of loss
in the case that a large loss L ≥ V aRα(L) happens.

Definition 8 Let α be a given confidence level and L a contin-
uous loss function with distribution function FL. CV aRα(L) :=
ESα(L) = E(L|L ≥ V aRα(L)).

If FL is continuous:

CV aRα(L) = E(L|L ≥ V aRα(L)) =
E(LI[qα(L),∞)(L))
P (L≥qα(L)) =

1
1−αE(LI[qα(L),∞)) = 1

1−α
∫+∞
qα(L)

ldFL(l)

IA is the indicator function of the set A: IA(x) =

{

1 x ∈ A
0 x 6∈ A

If FL is discrete the generalized CVaR is defined as follows:

GCV aRα(L) :=
1

1− α

[

E(LI[qα(L),∞)) + qα

(

1− α− P (L > qα(L))
)]

Lemma 1 Let α be a given confidence level and L a continuous
loss function with distribution FL.

Then CV aRα(L) = 1
1−α

∫ 1

α
V aRp(L)dp holds.
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Example 9 (a) Let L ∼ Exp(λ). Compute CV aRα(L).

(b) Let the distribution function FL of the loss function L be given
as follows : FL(x) = 1 − (1 + γx)−1/γ for x ≥ 0 and γ ∈ (0,1).
Compute CV aRα(L).

Example 10 Let L ∼ N(0,1). Let φ und Φ be the density and the dis-

tribution function of L, respectively. Show that CV aRα(L) = φ(Φ−1(α))
1−α

holds.

Let L′ ∼ N(µ, σ2). Show that CV aRα(L′) = µ+ σφ(Φ−1(α))
1−α holds.

Exercise 3 Let the loss L be distributed according to the Student’s
t-distribution with ν > 1 degrees of freedom. The density of L is

gν(x) =
Γ((ν + 1)/2)√

νπΓ(ν/2)

(

1+
x2

ν

)−(ν+1)/2

Show that CV aRα(L) =
gν(t−1ν (α))

1−α

(

ν+(t−1ν (a))2

ν−1

)

, where tν is the distribu-

tion function of L.
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Methods for the computation of VaR und CVaR

Consider the portfolio value Vm = f(tm, Zm), where Zm is the vector
of risk factors.

Let the loss function over the interval [tm, tm+1] be given as Lm+1 =
l[m](Xm+1), where Xm+1 is the vector of the risk factor changes, i.e.

Xm+1 = Zm+1 − Zm.

Consider observations (historical data) of risk factor values
Zm−n+1, . . . , Zm.

How to use these data to compute/estimate V aR(Lm+1),
CV aR(Lm+1)?
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The empirical VaR and the empirical CVaR

Let x1, x2, . . . , xn be a sample of i.i.d. random variables X1, X2, . . . , Xn

with distribution function F

The empirical distribution functionis given as

Fn(x) =
1

n

n
∑

k=1

I[xk,+∞)(x)

The empirical quantile is given as

qα(Fn) = inf{x ∈ IR:Fn(x) ≥ α} = F←n (α)

Assumption: x1 > x2 > . . . > xn. Then qα(Fn) = x[n(1−α)]+1 holds,
where [y] := sup{n ∈ IN:n ≤ y} for every y ∈ IR.

Let q̂α(F ) := qα(Fn) be the empirical estimator of the quantile qα(F ).

Lemma 2 Let F be a strictly increasing funkcion.
Then limn→∞ q̂α(F ) = qα(F ) holds ∀α ∈ (0,1), i.e. the estimator q̂α(F )
is consistent.

The empirical estimator of CVaR is

ĈVaRα(F ) =

∑[n(1−α)]+1
k=1 xk

[(n(1− α)] + 1
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A non-parametric bootstrapping approach
to compute the confidence interval of the estimator

Let the random variables X1, X2, . . . , Xn be i.i.d. with distribution func-
tion F and let x1, x2, . . . xn be a sample of F .

Goal: computation of an estimator of a certain parameter θ depending
on F , e.g. θ = qα(F ), and the corresponding confidence interval.

Let θ̂(x1, . . . , xn) be an estimator of θ, e.g. θ̂(x1, . . . , xn) = x[(n(1−α)]+1,n

θ = qα(F ), where x1,n > x2,n > . . . > xn,n is the ordered sample.

The required confidence interval is an (a, b) with a = a(x1, . . . , xn) u.
b = b(x1, . . . , xn), such that P (a < θ < b) = p, for a given confidence
level p.

Case I: F is known.

Generate N samples x̃(i)
1 , x̃(i)

2 , . . . , x̃(i)
n , 1 ≤ i ≤ N , by simulation from F

(N should be large)

Let θ̃i = θ̂
(

x̃(i)
1 , x̃(i)

2 , . . . , x̃(i)
n

)

, 1 ≤ i ≤ N .

26



A non-parametric bootstrapping approach
to compute the confidence interval of the estimator

Case I (cont.)

The empirical distribution function of θ̂(x1, x2, . . . , xn) is given as

F θ̂
N :=

1

N

N
∑

i=1

I[θ̃i,∞)

and it tends to F θ̂ for N →∞.

The required conficence interval is given as
(

q1−p
2

(F θ̂
N), q1+p

2

(F θ̂
N)

)

(assuming that the sample sizes N und n are large enough).
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