Example 5 European call option (ECO)

Consider an ECO over an asset S with execution date T, price Sy at
time T and strike price K.

Value of the ECO at time T: max{Sr — K, 0}

Price of ECO at timet< T: C = C(t,S5,r,0) (Black-Scholes model),
where S is the price of the asset, r is the interest rate and o is the
volatility, all of them at time ¢.

Risk factors: Z, = (In Sn, Tn, 0n) !
Risk factor changes: X, 11 = (InSp41 —IN Sy, 7pt1 — Ty Ong1 — on) L

The linearized loss: L%, = —(CiAt + CsSnXny11 + CrXpg12 +
CoXn+13)

The greeks: C; - theta, Cg - delta, C; - rho, C, - Vega
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Purpose of the risk management:

e Determination of the minimum regulatory capital:
I.e. the capital, needed to cover possible losses.

e As a management tool:
to determine the limits of the amount of risk a unit within the company may

take

Some basic risk measures (not based on the loss distribution)

e Notational amount: weighted sum of notational values of individual secu-
rities weighted by a prespecified factor for each asset class

e.d. in Basel I (1998):
Cooke Ratio=

Gewicht := |

regulatory capital > 8%,

risk-weighted sum =

0%
20%
50%
100%

for claims on governments and supranationals
(OECD)

claims on banks

claims on individual investors with mortgage securi-
ties

claims on the private sector

Disadvantages: no difference between long a short positions, does
not consider diversification effects
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e Coefficients of sensitivity with respect to risk factors

Portfolio value at time t,: Vi, = f(tn, Zn),
Z, ist a Vektor of d risk factors

Sensitivity coefficients: f., = 2L(tn, Z,), 1 <i<d

Example: “The Greeks” of a portfolio are the sensitivity coeffi-
cients

Disadvantages: Assessment of risk arising due to simultaneous
change of different risk factors is difficult;
aggregation of risks arising in differnt markets is difficult ;

e Scenario based risk measures: Let n be the number of possible
risk factor changes (= szenarios).

Let x = {X1,X>5,..., Xy} be the set of scenarios and Ip,;(-) the
portfolio loss operator.

Assign a weight w; to every scenario 7, 1 <:< N
Portfolio risk:

Wx, w] = max{wil,)(X1), w2l (X2),. .., wnlp)(XN)}
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Example 6 SPAN ruled applied at CME (see Artzner et al., 1999)

Portfolio consists of many units of a certain future contract and many
put and call options on the same contract with the same maturity.

Computing SPAN Marge:

Scenarios 1, 1 <1< 14:

Scenarios 1 to 8 Scenarios 9 to 14
Volatility | Price of the future | Volatility | Price of the future
/! s * Range a = % Range
N s 3 x Range N N 3 x Range
Va % x Range N % x Range
N

Scenarios i, 1 = 15,16 represent an extreme increase or decrease of
the future price, respectively.

1 1<i<14
Yi=19 0,35 15<i< 16

An appropriate model (zB. Black-Scholes) is used to generate the
option prices in the different scenarios.
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¢ Risk measures based on the loss distribution
Let I := Fp,,, be the loss distribution of L,41.

The parameter of F;, will be estimated in terms of historical data,
either ddirectly oder by involving risk factors.

1. The standard deviation std(L) := \/o?(F})
It is used frequently in portfolio theory.

Disadvantages:

— STD exists only for distributions with E(F?) < oo, not ap-
plicable to leptocurtic (‘“fat tailed”) loss distributions;

— gains and losses equally influence the STD.

Example 7 L; ~ N(0,2), Ly ~ ta (Student’s distribution with 4
degrees of freedom)

0?(L1) = 2 and o?(L2) = 25 = 2 hold, where m is the
number of degrees of freedom, thus m = 2.

However the probability of losses is much larger for L> than
for L1.

Plot the logarithm of the quotient In[P(Ly > x)/P(L1 > x)]!
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2. Value at Risk (VaR,(L))

Definition 5 Let L be the loss distribution and oo € (0,1) a given
confindence level.

VaR.,(L) is the smallest number [, such that P(L > 1) <1 — «
holds.

VaR (L) =infllc R:P(L>1)<1—-a}=

infllcR:1—-—Fp(l) <l—a}=inf{leR: Fr(l) > a}

BIS (Bank of International Settlements) suggests VaRgg9(L)
over a horizon of 10 days as a measure for the market risk of
a portfolio.

Definition 6 Let F: A — B be a monotone increasing function
(d.h. x <y=— F(z) < F(y)). The function

F7:B— AU{—00,+0},y — inf{zx € R: F(x) > y}
is called generalized inverse function of F'.
Notice that inf ) = oco.

If F is strictly monotone increasing, then F~1 = F* holds.

Exercise 1 Compute F*< for F:[0,4c) — [0, 1] with

1/2 0<z<1
F(w):{l/ 122
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Definition 7 Let F:IR — IR be a monotone increasing function.
go(F) == inf{x € R: F(z) > a} is called a-quantile of F.

For the loss function L and its distribution function F' the following
holds:

VaRo (L) = qu(F) = F<(a).
Example 8 Let L ~ N(u,o?).

Then VaR.,(L) = p+ 0q¢o(®) = p+ od () holds, where & is the
distribution function of a random variable X ~ N(0,1).

Exercise 2 Consider a portfolio consisting of 5 pieces of an asset A.
The today’s price of A is So = 100. The daily logarithmic returns
are i.i.d.: X1 =1In2, Xo=1In2,... ~ N(0,0.01). Let L1 be the 1-day

portfolio loss in the time interval (today, tomorrow).
(a) Compute VaRo.99(L1).

(b) Compute VaRo_gg(Lloo) and VaRo_gg(LlAOO), where L1ioo is the 100-
day portfolio loss over a horizon of 100 days starting with today.
L% s the linearization of the above mentioned 100-day PF-
portfolio loss.

Hint: For Z ~ N(0,1) use the equality F,'(0.99) ~ 2.3.
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3. Conditional Value at Risk (CVaR.(L)) (or Expected Shortfall (ES))
A disadvantage of VaR: It tells nothing about the amount of loss
in the case that a large loss L > VaR,(L) happens.

Definition 8 Let o be a given confidence level and L a contin-
uous loss function with distribution function F;. CVaR.(L) :=
ES.(L) = E(L|L > VaR.(L)).

If F} is continuous:

CVaRa(L) = BUIL > VeRd(D) = Spgsigys =
1 1 o0
T (L) .00) = 125 Jg, (1) 1AFL(D)

: - . _ 1 z€ A
I4 is the indicator function of the set A: I4(x) = 0 z¢d A

If Fy, is discrete the generalized CVaR is defined as follows:

GCVaR.(L) := ﬁ [E(Lf[qa@),oo)) + Qa<1 —a— P(L > qa(L)))]

Lemma 1 Let o be a given confidence level and L a continuous
loss function with distribution F7,.

Then CVaRa(L) = 1= [ VaR,(L)dp holds.
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Example 9 (a) Let L ~ Exp()\). Compute CVaR,(L).

(b) Let the distribution function Fy of the loss function L be given
as follows : Fr(z) = 1— (1 +~2) Y for z > 0 and v € (0,1).
Compute CVaR,(L).

Example 10 Let L ~ N(0,1). Let ¢ und & be the density and the dis-
tribution function of L, respectively. Show that CVaRa(L) = %2 (@)
holds.

Let L' ~ N(u,02). Show that CVaRa(L") = p + o222 hojgs.

Exercise 3 Let the loss L be distributed according to the Student’s
t-distribution with v > 1 degrees of freedom. The density of L is

Fr((v+1)/2) (1 n x2)—(u+l)/2
Vvl (v/2)

Show that CVaRa(L) = 24 (1O | yere ¢, is the distribu-
tion function of L.

gu(z) = »
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Methods for the computation of VaR und CVaR

Consider the portfolio value V,,, = f(tm, Zm), Where Z,, is the vector
of risk factors.

Let the loss function over the interval [tpn,tn+1] be given as L,,4+1 =
Um](Xm+1), where X, is the vector of the risk factor changes, i.e.

Xpt1 = Zmt1 — Zm.

Consider observations (historical data) of risk factor values
Zm_n_l_]_,...,Zm.

How to wuse these data to compute/estimate VaR(L;+1),
CVGR(Lm+1)?
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The empirical VaR and the empirical CVaR

Let z1,xo,...,x, be a sample of i.i.d. random variables X, Xo,..., X,
with distribution function F

The empirical distribution functionis given as
1 n

The empirical quantile is given as
qo(Fp) = inf{zx e R: F,,(z) > a} = F; ()

Assumption: z1 > x2 > ... > x,. Then qu(Fn) = [, 1-q)]+1 holds,
where [y] :=sup{n € N:n < y} for every y € R.

Let g (F) := qo.(F,) be the empirical estimator of the quantile ¢,(F).

Lemma 2 Let F be a strictly increasing funkcion.
Then limye0 @o(F) = qo(F') holds Va € (0,1), i.e. the estimator q.(F)
is consistent.

The empirical estimator of CVaR is

- )41,
CVaR,(F) = =
) = ma o+ 1
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A non-parametric bootstrapping approach
to compute the confidence interval of the estimator

Let the random variables X, Xo,..., X, bei.i.d. with distribution func-
tion F and let z1,x2,...x, be a sample of F.

Goal: computation of an estimator of a certain parameter 60 depending
on F, e.g. 8 = q.(F), and the corresponding confidence interval.

Let (x1,...,z,) be an estimator of 6, e.g. (z1,...,Tn) = T((n(1-a)]+1n
0 = qo(F'), where z1,, > x2, > ... > Ty, iS the ordered sample.

The required confidence interval is an (a,b) with a = a(x1,...,2,) u.
b= b(x1,...,x,), such that P(a < 6 < b) = p, for a given confidence
level p.

Case I: F' is known.

Generate N samples 37,357, ... 2%, 1 <i < N, by simulation from F
(N should be large)

Let , = 0(z\",7,...,27)), 1 <i<N.
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A non-parametric bootstrapping approach
to compute the confidence interval of the estimator

Case I (cont.)
The empirical distribution function of 8(z1,zo,...,x,) iS given as
1N
0 .__ _
Fy = ; I3 o0)

and it tends to F? for N — oo.

The required conficence interval is given as (ql_p(F]%),ql_ﬂ(Fﬂ))

(assuming that the sample sizes N und n are large enough).
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