Operations Research winter term 2017/2018
 5th work sheet (multicriteria optimization)

29. (Ehrgott et al., 1997^{1})

Let $X \subseteq \mathbb{R}^{\mathrm{n}}, f: X \rightarrow \mathbb{R}$, and $\bar{x} \in X$. The set $L_{\leq}(f(\bar{x}))=\{x \in X: f(x) \leq f(\bar{x})\}$ is called a level set of f in \bar{x}, the set $L_{=}(f(\bar{x}))=\{x \in X: f(x)=f(\bar{x})\}$ is called level curve of f in \bar{x} and $L_{<}(f(\bar{x}))=\{x \in X: f(x)<f(\bar{x})\}$ is called strict level set of f in \bar{x}. Consider an MCOP $\left(X, f, \mathbb{R}^{\mathrm{Q}}\right) / \mathrm{id} /\left(\mathbb{R}^{\mathrm{Q}},<\right)$. Let $x^{*} \in X, f=\left(f_{1}, f_{2}, \ldots, f_{q}\right)^{T}$ and $y_{q}:=f_{q}\left(x^{*}\right)$ for $q=1,2, \ldots, Q$. Show that
(a) x^{*} is strict Pareto optimal if and only if $\cap_{q=1}^{Q} L_{\leq}\left(y_{q}\right)=\left\{x^{*}\right\}$, where $L_{\leq}\left(y_{q}\right)$ is the level set of f_{q} in $x^{*}, q=1,2, \ldots, Q$.
(b) x^{*} is Pareto optimal if and only if $\cap_{q=1}^{Q} L_{\leq}\left(y_{q}\right)=\cap_{q=1}^{Q} L_{=}\left(y_{q}\right)$, where $L_{\leq}\left(y_{q}\right)$ is as in (a) and $L_{=}\left(y_{q}\right)$ is the level curve of f_{q} in $y_{q}, q=1,2, \ldots, Q$.
(c) x^{*} ist weakly Pareto optimal if and only if $\cap_{q=1}^{Q} L_{<}\left(y_{q}\right)=\emptyset$, where $L_{<}\left(y_{q}\right)$ is the strict level set of f_{q} in $y_{q}, q=1,2, \ldots, Q$.
30. Provide an example in which the following relationships hold, respectively:
(a) $S(Y) \subset Y_{e f f} \subset S_{0}(Y)$ where both inclusions are strict and $S(Y), S_{0}(Y)$ are defined as in the lecture.
(b) $S(Y) \cup S_{0}^{\prime}(Y)=Y_{\text {eff }}=S_{0}(Y)$, where

$$
S_{0}^{\prime}(Y)=\left\{y^{\prime} \in Y: \exists \lambda \in \mathbb{R}_{+}^{\mathrm{Q}} \backslash\{0\} \text { such that }\left\{\mathrm{y}^{\prime}\right\}=\mathrm{S}(\lambda, \mathrm{Y})\right\}
$$

$S(\lambda, Y), S(Y)$ and $S_{o}(Y)$ are defined as in the lecture, namely

$$
S(\lambda, Y)=\operatorname{argmin}\{\langle\lambda, y\rangle: y \in Y\}, S(Y)=\cup_{\lambda \in \operatorname{Int}\left(\mathbb{R}_{+}^{Q}\right)} S(\lambda, Y), \text { and } S_{0}(Y)=\cup_{\lambda \in \mathbb{R}_{+}^{Q} \backslash\{0\}} S(\lambda, Y)
$$

31. Let $X=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: \mathrm{x}_{1} \geq 0, \mathrm{x}_{2} \geq 0, \mathrm{x}_{1}+\mathrm{x}_{2} \leq 100,2 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 150\right\}, f_{1}\left(x_{1}, x_{2}\right)=-6 x_{1}-4 x_{2}$ and $f_{2}\left(x_{1}, x_{2}\right)=-x_{1}$. Solve the ϵ-constrained problem $P_{1}(\epsilon)$ for $\epsilon=0$ cf. lecture for the definition of ϵ-constrained problems). Use the method of Benson to check whether the optimal solution x^{*} of $P_{1}(0)$ is Pareto-optimal to $\left(X, f, \mathbb{R}^{2}\right) / \mathrm{id} /\left(\mathbb{R}^{2},<\right)$ or not.
32. Consider $X=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}:\left(\mathrm{x}_{1}-1\right)^{2}+\left(\mathrm{x}_{2}-1\right)^{2} \leq 1\right\}$ and $f: X \rightarrow \mathbb{R}^{2}$ with $f(x)=x, \forall x \in X$. Solve the problem $P_{2}(\epsilon, \mu)$ (cf. lecture) with $\epsilon=0$ in order to illustrate that there exist (non-proper) Pareto optimal solutions to $\left(X, f, \mathbb{R}^{2}\right) / \mathrm{id} /\left(\mathbb{R}^{2}, \leq\right)$ which can not be obtained as optimal solutions of $P_{2}(\epsilon, \mu)$ for some $0 \leq \mu<\infty$. Could this Pareto optimal solution of $\left(X, f, \mathbb{R}^{2}\right) / \mathrm{id} /\left(\mathbb{R}^{2}, \leq\right)$ be obtained as an optimal solution of $P_{2}(\epsilon, \mu)$ with $0 \leq \mu<\infty$ for some other value of $\epsilon \neq 0$?
33. Consider $\left(X, f, \mathbb{R}^{\mathrm{n}}\right) / \mathrm{id} /\left(\mathbb{R}^{\mathrm{Q}}, \leq\right)$ and assume $0<\min _{x \in X} f_{k}(x)$, for all $k=1,2, \ldots, Q$. Prove that $x \in X_{\mathrm{wPar}}$ if and only if x is an optimal solution of $\min _{x \in X} \max _{k=1,2, \ldots, Q} \lambda_{k} f_{k}(x)$, for some $\lambda \in$ $\operatorname{int}\left(\mathbb{R}_{+}^{\mathrm{Q}}\right)$.
34. Consider finding a compromise solution by maximizing the distance to the nadir point. Let $\|\cdot\|$ be a norm. Show that an optimal solution of the problem $\max \left\{\left\|f(x)-y^{N}\right\|: x \in X\right\}$ is weakly Pareto optimal to $\left(X, f, \mathbb{R}^{\mathrm{n}}\right) / \mathrm{id} /\left(\mathbb{R}^{\mathrm{Q}}, \leq\right)$. Give a condition under which an optimal solution of the above maximization problem is guaranted to be a Pareto optimal solution of $\left(X, f, \mathbb{R}^{\mathrm{n}}\right) / \mathrm{id} /\left(\mathbb{R}^{\mathrm{Q}}, \leq\right)$.

[^0]35. Solve the problem in example 31 by means of the compromise programming approach. Use $\lambda=$ $(1 / 2,1 / 2)$ and identify the solution of $C P_{p}^{w}$ für $p=1,2, \infty$.
36. Let $Y=\left\{y=\left(y_{1}, y_{2}\right) \in \mathbb{R}_{+}^{2}: \mathrm{y}_{1}^{2}+\mathrm{y}_{2}^{2} \geq 1\right\}$. Show the existence of a parameter $p, 1<p<\infty$, such that the following equality holds:
$$
Y_{\mathrm{eff}}=\cup_{w \in \Lambda^{0}} A(\lambda, p, Y) .
$$

Use the ideal point y^{I} or the utopic point y^{U} in the definition of $A(w, p, Y)$ and N_{p}^{λ}.

[^0]: ${ }^{1}$ M. Ehrgott, Multicriteria Optimization, Second Edition, Springer, Berlin-Heidelberg-New York, 2005

