Operations Research winter term 2017/2018

5th work sheet (multicriteria optimization)

29. (Ehrgott et al., 1997^1)

Let $X \subseteq \mathbb{R}^n$, $f: X \to \mathbb{R}$, and $\bar{x} \in X$. The set $L_{\leq}(f(\bar{x})) = \{x \in X: f(x) \leq f(\bar{x})\}$ is called a level set of f in \bar{x} , the set $L_{=}(f(\bar{x})) = \{x \in X: f(x) = f(\bar{x})\}$ is called level curve of f in \bar{x} and $L_{\leq}(f(\bar{x})) = \{x \in X: f(x) < f(\bar{x})\}$ is called strict level set of f in \bar{x} . Consider an MCOP $(X, f, \mathbb{R}^Q)/\mathrm{id}/(\mathbb{R}^Q, <)$. Let $x^* \in X$, $f = (f_1, f_2, \ldots, f_q)^T$ and $y_q := f_q(x^*)$ for $q = 1, 2, \ldots, Q$. Show that

- (a) x^* is strict Pareto optimal if and only if $\bigcap_{q=1}^Q L_{\leq}(y_q) = \{x^*\}$, where $L_{\leq}(y_q)$ is the level set of f_q in x^* , $q = 1, 2, \ldots, Q$.
- (b) x^* is Pareto optimal if and only if $\bigcap_{q=1}^Q L_{\leq}(y_q) = \bigcap_{q=1}^Q L_{=}(y_q)$, where $L_{\leq}(y_q)$ is as in (a) and $L_{=}(y_q)$ is the level curve of f_q in y_q , $q = 1, 2, \ldots, Q$.
- (c) x^* ist weakly Pareto optimal if and only if $\bigcap_{q=1}^Q L_{\leq}(y_q) = \emptyset$, where $L_{\leq}(y_q)$ is the strict level set of f_q in y_q , $q = 1, 2, \ldots, Q$.
- 30. Provide an example in which the following relationships hold, respectively:
 - (a) $S(Y) \subset Y_{eff} \subset S_0(Y)$ where both inclusions are strict and S(Y), $S_0(Y)$ are defined as in the lecture.
 - (b) $S(Y) \cup S'_0(Y) = Y_{eff} = S_0(Y)$, where

$$S'_0(Y) = \left\{ y' \in Y : \exists \lambda \in \mathrm{I\!R}^{\mathrm{Q}}_+ \setminus \{0\} \text{ such that } \{y'\} = \mathrm{S}(\lambda, \mathrm{Y}) \right\}.$$

 $S(\lambda, Y), S(Y)$ and $S_o(Y)$ are defined as in the lecture, namely

$$S(\lambda,Y) = \operatorname{argmin}\{\langle \lambda,y\rangle \colon y \in Y\} \,, \, S(Y) = \cup_{\lambda \in Int(\mathbb{R}^Q_+)} S(\lambda,Y) \,, \text{ and } S_0(Y) = \cup_{\lambda \in \mathbb{R}^Q_+ \setminus \{0\}} S(\lambda,Y) \,.$$

- 31. Let $X = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \ge 0, x_2 \ge 0, x_1 + x_2 \le 100, 2x_1 + x_2 \le 150\}$, $f_1(x_1, x_2) = -6x_1 4x_2$ and $f_2(x_1, x_2) = -x_1$. Solve the ϵ -constrained problem $P_1(\epsilon)$ for $\epsilon = 0$ cf. lecture for the definition of ϵ -constrained problems). Use the method of Benson to check whether the optimal solution x^* of $P_1(0)$ is Pareto-optimal to $(X, f, \mathbb{R}^2)/\mathrm{id}/(\mathbb{R}^2, <)$ or not.
- 32. Consider $X = \{(x_1, x_2) \in \mathbb{R}^2 : (x_1 1)^2 + (x_2 1)^2 \leq 1\}$ and $f: X \to \mathbb{R}^2$ with $f(x) = x, \forall x \in X$. Solve the problem $P_2(\epsilon, \mu)$ (cf. lecture) with $\epsilon = 0$ in order to illustrate that there exist (non-proper) Pareto optimal solutions to $(X, f, \mathbb{R}^2)/\mathrm{id}/(\mathbb{R}^2, \leq)$ which can not be obtained as optimal solutions of $P_2(\epsilon, \mu)$ for some $0 \leq \mu < \infty$. Could this Pareto optimal solution of $(X, f, \mathbb{R}^2)/\mathrm{id}/(\mathbb{R}^2, \leq)$ be obtained as an optimal solution of $P_2(\epsilon, \mu)$ with $0 \leq \mu < \infty$ for some other value of $\epsilon \neq 0$?
- 33. Consider $(X, f, \mathbb{R}^n)/\mathrm{id}/(\mathbb{R}^Q, \leq)$ and assume $0 < \min_{x \in X} f_k(x)$, for all $k = 1, 2, \ldots, Q$. Prove that $x \in X_{\mathrm{WPar}}$ if and only if x is an optimal solution of $\min_{x \in X} \max_{k=1,2,\ldots,Q} \lambda_k f_k(x)$, for some $\lambda \in \mathrm{int}(\mathbb{R}^Q_+)$.
- 34. Consider finding a compromise solution by maximizing the distance to the nadir point. Let $|| \cdot ||$ be a norm. Show that an optimal solution of the problem $\max\{||f(x) - y^N||: x \in X\}$ is weakly Pareto optimal to $(X, f, \mathbb{R}^n)/\mathrm{id}/(\mathbb{R}^Q, \leq)$. Give a condition under which an optimal solution of the above maximization problem is guaranted to be a Pareto optimal solution of $(X, f, \mathbb{R}^n)/\mathrm{id}/(\mathbb{R}^Q, \leq)$.

¹M. Ehrgott, Multicriteria Optimization, Second Edition, Springer, Berlin-Heidelberg-New York, 2005

- 35. Solve the problem in example 31 by means of the compromise programming approach. Use $\lambda = (1/2, 1/2)$ and identify the solution of CP_p^w für $p = 1, 2, \infty$.
- 36. Let $Y = \{y = (y_1, y_2) \in \mathbb{R}^2_+ : y_1^2 + y_2^2 \ge 1\}$. Show the existence of a parameter p, 1 , such that the following equality holds:

$$Y_{\text{eff}} = \cup_{w \in \Lambda^0} A(\lambda, p, Y).$$

Use the ideal point y^I or the utopic point y^U in the definition of A(w, p, Y) and N_p^{λ} .