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5th work sheet (dynamic programming)

20. Let the demand ri on a certain component be given as follows for the next five periods i, 1 ≤ i ≤ 5:
r1 = 2, r2 = 4, r3 = 2, r4 = 2 und r5 = 4. The components have to be produced and the production
involves setup costs of 5 Euro, production costs of 1 Euro per piece, and inventory costs of 0, 30
Euro per piece and month. Assume that the whole production of a month happens at the beginning
of the month and that in every month the whole demand is delivered to the customer immediately
after the production at the beginning of the month. Determine by means of dynamic programming
a production plan which fulfills the demand and minimizes the total costs.

21. A taxi company consumes 8500 liter fuel per month. The consumption happens continuously at a
constant rate. The costs of the fuel amount to 1.20 Euro per liter, the fixed ordering costs and the
inventory costs amount to 1000 Euro per order and 1 Cent per liter and month, respectively. Use the
EOQ model (cf. the lecture) to determine an ordering plan (i.e. when to order and which quantity to
order, respectively) which minimizes the overall costs and avoids shortfalls. How would you obtain
an optimal solution if the optimal cycle length is required to be an integer number (of months)?

22. Three teams of scientists are dealing with a difficult, yet unsolved, problem. The failure probability
of the teams, denoted by i, 1 ≤ i ≤ 3, is estimated to be 0, 4, 0, 6 and 0, 8, respectively. The efforts to
solve the problem will be intensified and two more scientists will deal with the problem as members
of some of the three teams. Table 22 shows for each (extended) team the estimated probability
of its failure depending on the additonal number of scientists it gets assigned. Determine the best
assignment of the two additional scientists to teams such that the estimated probability that all
three teams fail is minimized. Solve this problem by means of dynamic programming. Assume that
the failures of the teams happen independently and notice that a Bellman-like equation can also be
written in the case where the overall objective function is not the sum but the product of the costs
in the single periods.

Number of additional Estimated failure
probability

scientists assigned Team
1 2 3

0 0.4 0.6 0.8
1 0.2 0.4 0.5
2 0.15 0.2 0.3

Table 1: Data for Problem 22

23. The workload in a local company depends heavily on strong saisonal fluctuations. It is not desirable
to dismiss a part of the staff in the periods with lower workload, and it is also not desirable to pay the
wages of the peak-period all over the year, if this is not indispensable. Moreover, the management
is principally against regular overtime hours. Since the production has to be done on demand it is
not possible to build some inventory in the more quiet periods. In these circumstances it is difficult
to determine an optimal employment policy.

The estimated number of employees needed in the four seasons of the coming year is given as follows

Saison Spring Summer Automn Winter Spring

Employees
needed

255 270 240 200 255



and the number of employees should in no way decrease under the above given levels. The extra costs
for employing more people than (presumably) needed are estimated to be 2000 Euro per employee
and season. Further it is assumed that the recruitement and dismission costs are given by the
squared difference between the numbers of employees in the two consecutive seasons multiplied by
130. Notice that it is possible to employ part time staff; in this case the corresponding costs would
be proportional to the emplyoment hours.

The management wants to determine the levels of emplyement for every season of the following year
such that the extra costs are minimized. Solve this problem by means of dynamic programming.

24. Formulate the following optimization problem as a deterministic dynamic programming problem
with a continuous state space and a finite time horizon (DDOCPF) and solve it by applying the
value iteration algorithm (cf. lecture).

max 3x1 + 7x2 + 6f(x3)

s.t.

x1 + 3x2 + 2x3 ≤ 6

x1 + x2 ≤ 5

x1, x2, x3 ≥ 0

where f : [0,+∞)→ IR is given as follows:

f(x) =

{
0 x = 0

−1 + x3 x > 0

25. Formulate the following optimization problem as a deterministic dynamic optimization problem with
a finite time horizon (DDOPF) and solve it by applying the value iteration algorithm (cf. lecture).

max z = x1x
2
2x

3
3

s.t.
x1 + 2x2 + 3x3 ≤ 10
x1 ≥ 1, x2 ≥ 1, x3 ≥ 1
x1, x2, x3 integers

26. A company produces a delicate product by using a sofisticated technology which is not fully developed
yet. Every piece of the product works well with probability 1/2 and is irreparably defective with
probability 1/2, where the failures of the pieces are independent of each other. The company produces
many pieces of the product in each production run and hopes that at least one working piece will
be produced. The remaining pieces are worthless and will be discarded no matter whether they are
defective or not. The production costs amount to 100 Euro per piece and the fixed costs amount
to 300 Euro per production run. The time available until delivery allows to complete at most three
production runs. The company has to pay a fine of 1600 Euro if it cannot deliver a working piece
of the product on due time. Determine a production policy, i.e. the number of the production runs
and the number of pieces produced in each production run, such that the expected overall cost of
the company is minimized.

27. A popular game in Las Vegas is the one called “all or nothing”: in every run of the game the player
places a number of chips and either wins all of them or loses all of them. Assume that the probability
to win a run of the the game is 2/3 and different runs of the game are independent. Consider a
player who possesses three chips, plays at most three runs, and considers the possession of five chips
at the end of the game as a victory. Determine a playing strategy, which maximizes the probability
of a victory (according to the players own definition of a victory). A playing strategy specifies the
number of the placed chips in every run of the game depending on the outcome of the previous runs.

28. Consider a single-product warehouse with a storage capacity of M , M ∈ IN (i.e. the warehouse can
store at most M product units at a time). The warehouse gets inspected at discrete points n in time,



n = 0, 1, . . . , N − 1, and at each inspection it will be decided whether to order a certain amount
bn ∈ IN0 := IN∪{0} of the product and increase the stock or not. Assume that the ordered amount of
the product reaches the warehouse immediately, i.e. at the very same moment in which the order has
been placed. The demand on the product in the time interval [n, n+1) is the realisation of a random
variable Yn, n = 0, 1, . . . , N − 1. The random variables Yn, n = 0, 1, . . . , N − 1, are assumed to be
identically and independently distributed with a density given as P (Yn = x) = q(x), ∀x ∈ IN0 and
n = 0, 1, . . . , N−1. Moreover it is assumed that these random variables have a finite expected value.
Assume further that the demand is fulfilled immediately after the arrival of the ordered products in
the warehouse. If there is not enough stock to fulfill the demand in that moment, then the missed
demand will be considered again, right after the arrival of the next order. The odering costs amount
to cbn for every placed order bn, n = 0, 1, . . . , N − 1, where c is a given constant. There are also
storage costs and shortfall costs given as

l(zn) =

{
l1 · z z ≥ 0 (stock)
−l2 · z z < 0 (shortfall)

,

where l1, l2 ≥ 0 are prespecified constants, and zn is the stock or shortfall immediately after the
arrival of the order and the delivery of the demand at the beginning of the time interval [n, n+ 1).
The goal is to determine the minimum of the overall expected costs and an optimal ordering policy.
Formulate this problem as a stochastic dynamic programming problem and give the optimality
equation. The decision variable should represent the amount of stock right after the arrival of the
order and prior to the delivery.

29. Consider a deterministic dynamic minimization problem with an infinite planing horizon and discount
factor α ∈ (0, 1). Let the set S of the feasible states and the set A of the feasible decision be given
as S = {0, 1, 2} and A = {0, 1, 2}, respectively. Moreover let Sn = S, and An(s) = A hold for all
n ∈ IN and for all s ∈ S. Further let the state transition function and the one state cost function be
given as follows:

z(s, a) = (s+ a) mod 3 , r(s, a) = γa2 − β(s+ 1) , for all s ∈ S, and for all a ∈ A,

where γ > 0, β > 0, are two given parameters. Formulate some conditions to be fulfilled by the
parameters γ and β such that the policy iteration procedure terminates with an optimal solution
right after the second iteration. How would you comment/interpret this result?
(Consider that α is a given constant in (0, 1). The conditions on β and γ have to be specified
depending on α.)


