Combinatorial Optimization 2 Summer Term 2019 sixth work sheet

34. The Bin Packing Problem (BPP) is defined as follows. An instance I consists of a list of nonnegative numbers a_1, a_2, \ldots, a_n not larger than 1. The task is to find a pair (k, f) with a number $k \in \mathbb{N}$ and a mapping $f: \{1, 2, \ldots, n\} \to \{1, 2, \ldots, k\}$ such that $\sum_{i:f(i)=j} a_i \leq 1$ for all $j \in \{1, 2, \ldots, k\}$ and k is the smallest natural number for which such a mapping f exists. The smallest k as above is called the optimal value of the problem for instance I and is denoted by OPT(I).

The Next-Fit (NF) Algorithm for BPP works with two quantities k and S initialized by k := 1 and S := 0. Then, for i = 1 to n, it checks whether $S + a_i > 1$ and sets k := k + 1, S := 0 in the "yes" case. It further sets f(i) := k and $S := S + a_i$.

For an instance I of BPP consisting of the n numbers $a_i \in [0, 1]$, $i \in \{1, 2, ..., n\}$, denote by SUM(I) the sum $\sum_{i=1}^{n} a_i$. Further denote by NF(I) the output k of the NF algorithm applied to instance I. Show that the following inequalities hold:

$$NF(I) \leq 2[SUM(I)] - 1 \leq 2OPT(I) - 1.$$

- 35. Let k be fixed. Describe a pseudopolynomial algorithm which given an instance I of the Bin Packing Problem finds a solution for I which uses no more than k bins or decides that no such solution exists.
- 36. Consider the BBP restricted to instances with a_1, a_2, \ldots, a_n such that $a_i > \frac{1}{3}$, for all $i \in \{1, 2, \ldots, n\}$.
 - (a) Reduce the problem to the cardinality matching problem.
 - (b) Show how to solve the problem in $O(n \log n)$ time.
- 37. Suppose that the n cities of a Travelling Salesman Problem (TSP) are partitioned into m clusters such that the distance between two cities is 0 if and only if they belong to the same cluster.
 - (a) Prove that there exists an optimum TSP tour with at most m(m-1) edges of positive weight.
 - (b) Prove that such a TSP can be solved in polynomial time if m is fixed.
- 38. Decribe a polynomial time algorithm which optimally solves any TSP instance where the input is the metric closure of a weighted tree.

(Recall that the metric closure of an undirected graph G = (V, E) with edge weights $c: E \to \mathbb{R}_+$ is a graph $\overline{G} = (\overline{V}, \overline{E})$ with edge weights $\overline{c}: \overline{E} \to \mathbb{R}$, where $\overline{V} := V, \overline{E} := \{\{i, j\}: \text{ there exists an } i-j\text{-path in } G\}$ and $\overline{c}(\{i, j\})$ equals the length of a shortest i-j-path in (G, c) for any $\{i, j\} \in \overline{E}$.