Combinatorial Optimization 2 Summer Term 2019 fourth work sheet

25. Formulate a 2-factor approximation algorithm for the following problem. Given a digraph with nonnegative edge weights, find an acyclic subgraph of maximum weight.

Note: No k-factor approximation algorithm for this problem is known for k < 2.

- 26. (a) Give a polynomial time algorithm for the minimum vertex cover problem in a bipartite graph.
 - (b) Let $M \in \{0,1\}^{|V| \times |E|}$ be the incidence matrix of a graph G = (V, E) with weights $c: E \to \mathbb{R}_+$ on the edges. Observe that $\min\{c^t x: M^t x \ge 1, 0 \le x \le 1\}$ is a linear relaxation of the minimum weight vertex cover problem (with $\mathbf{0}$, $\mathbf{1}$ being the vectors of all zeroes and all ones in $\mathbb{R}^{|E|}$, respectively). Show that the minimization problem above has a half-integral optimal solution, i.e. an optimal solution \hat{x} such that $\hat{x} \in \{0, 1/2, 1\}^{|V|}$.
 - (c) Use the result of (b) to derive a 2-factor approximation algorithm for the minimum weight vertex cover problem.
- 27. Prove that he simple greedy algorithm for the maximum cut problem discussed in the lecture is a 2 -factor approximation algorithm.