# Advanced and algorithmic graph theory Summer term 2020 <br> Sixth worksheet 

51. Determine the Ramsey number $R(3)$.
52. Show that for every tree $T$ on $t \geq 2$ vertices and for any $s \geq 2, s, t \in \mathbb{N}$, the equality $R\left(T, K_{s}\right)=(s-1)(t-1)+1$ holds. This results is due to Chvátal (1977) [2] and a proof can also be found in [1]. Recall that $R\left(T, K_{s}\right)$ is the smallest natural number $n \in \mathbb{N}$ such that for every graph $G$ of order $n$ either $T$ is a subgraph of $G$ or the complete graph $K_{s}$ on $s$ vertices is a subgraph of the complement $\bar{G}$.
53. Can you improve on the exponential upper bound on the Ramsey number $R(n)$ obtained in Theorem 7.3 (cf. the lecture) in the case of perfect graphs?
54. For the graphs $F$ and $H$ shown in Figure 1 determine $R(F, H)$, i.e. the smallest natural number $n \in \mathbb{N}$ such that for every graph $G$ of order $n$ either $F$ is a subgraph of $G$ or $H$ is a subgraph of the complement $\bar{G}$.
55. (a) What is the probability that a random graph in $\mathcal{G}(n, p)$ has exactly $m$ edges, for fixed $m \in \mathbb{N}, 0 \leq m \leq\binom{ n}{2}$ fixed?
(b) What is the expected number of edges in $G \in \mathcal{G}(n, p)$ ?
(c) What is the expected number of subgraphs of $G \in \mathcal{G}(n, p)$ which are isomorphic to $K_{r}$, for $1 \leq r \leq n$ ?
56. Prove or disprove:
(a) For each constant $p \in(0,1)$ almost no graph in $\mathcal{G}(n, p)$ is planar (as $n$ tends to infinity).
(b) For each natural number $k \in \mathbb{N}$ and each constant $p \in(0,1)$ almost no graph in $\mathcal{G}(n, p)$ is $k$-colorable (as $n$ tends to infinity).
57. Show that for each constant $p \in(0,1)$ almost every graph in $\mathcal{G}(n, p)$ has diameter 2 (as $n$ tends to infinity).
58. For every $k \geq 1, k \in \mathbb{N}$, find a threshold function for $\{G: \Delta(G) \geq k\}$.
59. For every $d \in \mathbb{N}$ determine the threshold function for the property of containing the $d$ dimensional cube (as defined in Exercise 2) and for the property of containing the complete graph $K_{d}$.
60. Does the property of containing any tree of order $k$, for some fixed $k \in \mathbb{N}$, have a threshold function? If yes, which? If not, why not?
61. Show that $t(n)=\frac{1}{n}$ is a threshold function for the property of containing any cycle.

Hint: For $p / t \rightarrow 0$ apply Markov's inequality and Lemma 7.7 about the expected number of cycles on $k$ vertices; for $p / t \rightarrow \infty$ apply Corollary 7.18 (cf. the lecture).


Figure 1: Graph for Exercise 54

## References

[1] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs, CRC Press, Taylor and Francis Group, 2016.
[2] V. Chvátal, Tree-complete Ramsey numbers, Journal of Grpah Theory 1, 1977, 93.

