
Advanced and algorithmic graph theory
Summer term 2020

Fourth worksheet

30. This example shows that the clique number ω(G) can be an arbitrarily bad lower bound on
the chromatic number χ(G) of a graph G.

Consider the sequence of graphs Mk, k ∈ IN, k ≥ 3, constructed recursively as follows (cf.
Mycielski 1955 [3]). Start with M3 := C5, the cycle on 5 vertices. The graph Mk+1 is obtained
from Mk by adding to Mk (n + 1) new vertices u1, u2, . . . , un, w, where n := |V (Mk)|, such
that w is connected to each ui, 1 ≤ i ≤ n, and ui is connected to all vertices in Γ(vi), i.e. to
all neighbours of vi, 1 ≤ i ≤ n. Show the following properties of Mk, k ≥ 3:

(i) Mk is triangle-free, i.e. it contains no cycle of length 3, ∀k ≥ 3,

(ii) χ(Mk) = k,

(iii) |V (Mk)| = 3 · 2k−2 − 1.

The graph M4 is also called the Grötzsch-Graph 1.

31. This example shows that the quotient |V (G)|
α(G) can be an arbitrarily bad lower bound on the

chromatic number χ(G) of a graph G with stability number α(G).

Let Gk be a graph with 2k+ 1 vertices such that V (Gk) = V (Kk)
⋃̇
V (Sk)

⋃̇
{w}, where Kk is

an induced subgraph of Gk which is complete and has k vertices, Sk is an induced subgraph
of Gk which has no edges and k vertices, and w is a vertex in Gk connected to all vertices
of Sk and to no vertex of Kk. Moreover each vertex of Sk is connected to all vertices of Kk.
Show that χ(Gk) = k + 1 and α(Gk) = k and deduce thereout the arbitrarily bad quality of

the bound |V (G)|
α(G) for χ(G).

32. Calculate the chromatic number of a graph in terms of the chromatic numbers of its blocks.

33. (a) Show that every graph G has a vertex ordering for which the greedy algorithm only uses
χ(G) colours.

(b) For every n ∈ IN, n ≥ 2, find a bipartite graph on 2n vertices ordered in such a way that
the greedy algorithm uses n rather than 2 colours.

34. Find a graph G for which Brooks theorem yields a significantly weaker bound on χ(G) than
the colouring number col(G) := max{δ(H):H ⊆ G}+ 1 (cf. lecture).

35. Prove or disprove: Every Hamiltonian connected graph of order at least 3 has chromatic
number at least 3.

36. A balanced coloring of a graph G is an assignment of colors k ∈ IN to the vertices of G such
that (i) every two adjacent vertices are assigned different colors and (ii) the cardinalities of any
two different color classes differ by at most 1. Recall that for each color k the corresponding
color class Ck is defined as the set of all vertices of G colored by color k. The smallest number
of colors used in a balanced coloring of a graph G is called the balanced chromatic number of
G and is denoted by χb(G).

1M4 is the unique smallest triangle-free 4-chromatic graph, where “smallest” refers to the number of vertices [2].



(a) Prove that the balanced chromatic number is well defined for every graph G.

(b) Determine χb(G) for a tree G with vertex set V (G) = {s, t, u, v, w, x, y, z} and edge set
E(G) = {{v, s}, {v, t}, {v, u}, {v, w}, {w, x}, {w, y}, {y, z}}.

37. A graph G is called color-critical if χ(H) < χ(G) for every proper induced subgraph H of
G. If G is a color-critical k-chromatic graph, then G is called critically k-chromatic or simply
k-critical. Observe that K2 is the only 2-critical graph and Kn is n-critical for every n ∈ IN.

(a) Show that the odd cycles are the only 3-critical graphs.

(b) Determine all k-critical graphs with k ≥ 3 and having the property that G− v is (k− 1)-
critical for every v ∈ V (G).

(c) It is known that a k-critical graph, k ∈ IN, k ≥ 2, is (k − 1)-edge-connected. (A proof of
this statement can be found e.g. in [1], Theorem 14.13 in Chapter 14.) Use this result to
show that (i) χ(G) ≤ 1+λ(G) for every k-critical graph (λ(G) being the edge-connectivity
of G) and (ii) χ(G) ≤ col′(G) := 1 + max{λ(H):H is a subgraph of G} for every graph
G. Observe that (i) implies χ(G) ≤ 1 + δ(G) for color-critical graphs G.

(d) Specify col′(G) if G is (i) a tree or (ii) an outerplanar graph2.

38. Recall from the lecture the following concepts. Given a graph G and lists of colours L(v) for
all v ∈ V (G), a vertex list colouring is a mapping

c:V (G)→
⋃

v∈V (G)

L(v) , v 7→ c(v) ,

such that c(v) ∈ L(v), ∀v ∈ V (G), and c(u) 6= c(v) whenever u, v ∈ V (G) and {u, v} ∈ E(G)
holds. G is called vertex k-choosable iff for any collection of lists L(v), v ∈ V (G), with
|L(v)| ≥ k, ∀v ∈ V (G), there exists a vertex list colouring. The smallest natural number k for
which a graph G is vertex k-choosable is called the list chromatic number of G (or the choice
number of G) and is denoted by χl(G). Show that every plane graph is vertex 6-choosable3.

39. For every natural number k ∈ IN find a graph G with χ(G) = 2 and χl(G) ≥ k.

40. Applications of coloring problems

(a) Figure 1 shows traffic lanes L1,. . . , L7 at the intersection of two streets. A traffic light is
located at the intersection. During a certain phase of the traffic light those cars in lanes
for which the light is green may proceed safely through the intersection in permissible
directions. What is the minimum number of phases needed for the traffic light so that
eventually all cars may proceed through the intersection? A phase of a traffic light may
be seen as a time interval where the colors of all lights in the traffic light do not change.

Hint: You might want to consider conflicting lanes and build a graph model for them.

(b) Model the classical sudoku puzzle as a graph coloring problem. The puzzle consists of a
9 × 9 grid in which some of the cells hold a natural number between 1 and 9. The cells
are grouped in the so called blocks, where a block is a 3× 3 subgrid such that the set of
the subgrid rows and the set of subgrid columns coincides with one of the three subsets
of rows or columns {1, 2, 3} or {4.5.6} or {7, 8, 9}.
The puzzle consists in filling the empty cells with natural numbers between 1 and 9 such
that every number between 1 and 9 appears exactly once in each row, in each column and
in each block. The order in which the cells are filled is irrelevant.

2A graph is called outerplanar if it is planar and it can be embedded in the plane such that all of its vertices lie on
the border of the outer face.

3There is a stronger result of Thomassen [4] stating that every planar graph is vertex 5-choosable.
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Figure 1: Graph for Exercise 40(a)


