Advanced and algorithmic graph theory
 Summer term 2020

First work sheet

1. Show that $\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2 \operatorname{rad}(G)$ hold for every graph G, where $\operatorname{rad}(G)$ denotes the radius of graph G and $\operatorname{diam}(G)$ denotes its diameter as defined in the lecture.
2. Let $d \in \mathbb{N}$ and $V=\{0,1\}^{d}$, thus V is the set of all $0-1$-sequences of length d. The graph with vertex set V in which two such sequences form an edge iff they differ in exactly one position, is called the d-dimensional cube and is denoted by Q_{d}. Determine the average degree, the number of edges, the diameter, the girth and the circumference of Q_{d}.
(Hint for the circumference: induction on d.)
3. Prove that a graph G with $\operatorname{rad}(G) \leq k$ and $\Delta(G) \leq d$, for some $k, d \in \mathbb{N}, d \geq 3$, has less than $\frac{d}{d-2}(d-1)^{k}$ vertices.
Hint: Consider a central vertex z and the sets D_{i} of vertices at distance i from z. Estimate the cardinality of D_{i}, for $i \in\{0,1, \ldots, k\}$.
4. Prove that a graph G with minimum degree $\delta:=\delta(G)$ and girth $g:=g(G)$ has at least $n_{0}(\delta, g)$ vertices ${ }^{1}$, where

$$
n_{0}(\delta, g):=\left\{\begin{array}{cc}
1+\delta \sum_{i=0}^{r-1}(\delta-1)^{i} & \text { if } g=: 2 r+1 \text { is odd } \\
2 \sum_{i=0}^{r-1}(\delta-1)^{i} & \text { if } g=: 2 r \text { is even }
\end{array}\right.
$$

5. Determine the connectivity $\kappa(G)$ and the edge connectivity $\lambda(G)$ for
(a) $G=P_{m}$ being a path of length m,
(b) $G=C_{n}$ being a cycle of length n,
(c) $G=K_{n}$ being a complete graph with n vertices,
(d) $G=K_{m, n}$ being a complete bipartite graph with m and n vertices in its partition sets, respectively, i.e $K_{m, n}:=(A \cup B, E)$ with $|A|=m,|B|=n$ and $E=\{(a, b): a \in A, b \in B\}$,
(e) G being the d dimensional cube.
6. Prove the following theorem of Dirac (1960): Any k vertices of a k-connected graph, $k \geq 2$, lie on a common cycle.
7. Let G be a $2 k$-edge connected graph for some $k \in \mathbb{N}$. Show that G contains at least k edge-disjoint spanning trees. Is this result best possible, i.e. is there any $2 k$-edge connected graph, which does not contain $k+1$ edge-disjoint spanning trees, for some $k \in \mathbb{N}$? Given an arbitrary $k \in \mathbb{N}$, can you find a $2 k$-edge connected graph, which does not contain $k+1$ edge-disjoint spanning trees?
8. Let $G=(V, E)$ be a graph and let T be a normal (rooted) tree with root r in G Show that the following holds for any normal tree T in G.
(a) Any two vertices $x, y \in V(T)$ are separated in G by the set $\lceil x\rceil \cap\lceil y\rceil$.
(b) If $S \subseteq V(T)=V(G)$ and S is down-closed (i.e. S contains the down-closure of any element $s \in S)$, then the components of $G-S$ are spanned by the sets $\lfloor x\rfloor$ with x minimal in $V(T)-S$.

[^0]9. ${ }^{2}$ Let G be a connected graph and let $r \in V(G)$. Show that there exists a normal spanning tree T rooted at r in G.
10. A graph G is called cubic, if all vertices of G have degree 3, i.e. $d_{G}(v)=3$, for all $v \in V(G)$. Show that for a cubic graph G the equality $\lambda(G)=\kappa(G)$ holds, i.e. the vertex connectivity equals the edge connectivity.
11. (a) Show that for a graph G with $\operatorname{diam}(G)=2$ the equality $\lambda(G)=\delta(G)$ holds.
(b) Let G be a graph with $|V(G)| \geq 2$ such that $d(u)+d(v) \geq n-1$ holds, for all $u, v \in V(G)$ with $\{u, v\} \notin E(G)$. Show that $\lambda(G)=\delta(G)$.
12. (a) Show that for the d-dimensional cube $Q_{d}, d \in \mathbb{N}, d \geq 2$, the equality $\kappa\left(Q_{d}\right)=\delta\left(Q_{d}\right)=d$ holds. (See Exercise No. 2 for the definition of Q_{d}.)
(b) A Halin graph H is defined as a graph obtained from a tree T without vertices of degree 2 by adding to it a cycle which joins all the leaves of T. Show that $\kappa(H)=\delta(H)=3$ holds for any Halin graph H.

[^1]
[^0]: ${ }^{1}$ Interestingly, one can obtain the same bound by replacing $\delta(G)$ by $d(G)$. More precisely, if $d(G) \geq d \geq 2$ and $g(G) \geq g$, for some $g \in \mathbb{N}$, then $|G| \geq n_{0}(g, d)$ holds, where $n_{0}(g, d)$ is defined as in Exercise 4. This was proved in N. Alon, S. Hoory and N. Lineal, The Moore bound for irregular graphs, Graphs and Combinatorics 18, 2002, 53-57.

[^1]: ${ }^{2}$ One possibilty to solve this exercise (probably not the simplest one) is to show that the edges traversed according to following precedure P form a normal spanning tree with root r in a connected graph G.
 P: Starting from r move alonge the edges of G, going whenever possible to a vertex not visited so far. If there is no such a vertex, go back along the edge by which the current vertex was first reached, unless the current vertex is r, in which case the procedure terminates.

 Normal trees generate by the procedure P above are called depth first search trees.

