Advanced and algorithmic graph theory Summer term 2020

First work sheet

- 1. Show that $rad(G) \leq diam(G) \leq 2rad(G)$ hold for every graph G, where rad(G) denotes the radius of graph G and diam(G) denotes its diameter as defined in the lecture.
- 2. Let $d \in \mathbb{N}$ and $V = \{0,1\}^d$, thus V is the set of all 0-1-sequences of length d. The graph with vertex set V in which two such sequences form an edge iff they differ in exactly one position, is called the d-dimensional cube and is denoted by Q_d . Determine the average degree, the number of edges, the diameter, the girth and the circumference of Q_d .

(Hint for the circumference: induction on d.)

3. Prove that a graph G with $rad(G) \leq k$ and $\Delta(G) \leq d$, for some $k, d \in \mathbb{N}, d \geq 3$, has less than $\frac{d}{d-2}(d-1)^k$ vertices.

Hint: Consider a central vertex z and the sets D_i of vertices at distance i from z. Estimate the cardinality of D_i , for $i \in \{0, 1, ..., k\}$.

4. Prove that a graph G with minimum degree $\delta := \delta(G)$ and girth g := g(G) has at least $n_0(\delta, g)$ vertices¹, where

$$n_0(\delta, g) := \begin{cases} 1 + \delta \sum_{i=0}^{r-1} (\delta - 1)^i & \text{if } g =: 2r + 1 \text{ is odd} \\ 2 \sum_{i=0}^{r-1} (\delta - 1)^i & \text{if } g =: 2r \text{ is even} \end{cases}$$

- 5. Determine the connectivity $\kappa(G)$ and the edge connectivity $\lambda(G)$ for
 - (a) $G = P_m$ being a path of length m,
 - (b) $G = C_n$ being a cycle of length n,
 - (c) $G = K_n$ being a complete graph with n vertices,
 - (d) $G = K_{m,n}$ being a complete bipartite graph with m and n vertices in its partition sets, respectively, i.e $K_{m,n} := (A \cup B, E)$ with |A| = m, |B| = n and $E = \{(a,b): a \in A, b \in B\}$,
 - (e) G being the d dimensional cube.
- 6. Prove the following theorem of Dirac (1960): Any k vertices of a k-connected graph, $k \ge 2$, lie on a common cycle.
- 7. Let G be a 2k-edge connected graph for some $k \in \mathbb{N}$. Show that G contains at least k edge-disjoint spanning trees. Is this result best possible, i.e. is there any 2k-edge connected graph, which does not contain k+1 edge-disjoint spanning trees, for some $k \in \mathbb{N}$? Given an arbitrary $k \in \mathbb{N}$, can you find a 2k-edge connected graph, which does not contain k+1 edge-disjoint spanning trees?
- 8. Let G = (V, E) be a graph and let T be a normal (rooted) tree with root r in G Show that the following holds for any normal tree T in G.
 - (a) Any two vertices $x, y \in V(T)$ are separated in G by the set $\lceil x \rceil \cap \lceil y \rceil$.
 - (b) If $S \subseteq V(T) = V(G)$ and S is down-closed (i.e. S contains the down-closure of any element $s \in S$), then the components of G S are spanned by the sets $\lfloor x \rfloor$ with x minimal in V(T) S.

¹Interestingly, one can obtain the same bound by replacing $\delta(G)$ by d(G). More precisely, if $d(G) \geq d \geq 2$ and $g(G) \geq g$, for some $g \in \mathbb{N}$, then $|G| \geq n_0(g,d)$ holds, where $n_0(g,d)$ is defined as in Exercise 4. This was proved in N. Alon, S. Hoory and N. Lineal, The Moore bound for irregular graphs, Graphs and Combinatorics 18, 2002, 53–57.

- 9. Let G be a connected graph and let $r \in V(G)$. Show that there exists a normal spanning tree T rooted at r in G.
- 10. A graph G is called *cubic*, if all vertices of G have degree 3, i.e. $d_G(v) = 3$, for all $v \in V(G)$. Show that for a cubic graph G the equality $\lambda(G) = \kappa(G)$ holds, i.e. the vertex connectivity equals the edge connectivity.
- 11. (a) Show that for a graph G with diam(G) = 2 the equality $\lambda(G) = \delta(G)$ holds.
 - (b) Let G be a graph with $|V(G)| \ge 2$ such that $d(u) + d(v) \ge n 1$ holds, for all $u, v \in V(G)$ with $\{u, v\} \notin E(G)$. Show that $\lambda(G) = \delta(G)$.
- 12. (a) Show that for the d-dimensional cube Q_d , $d \in \mathbb{N}$, $d \geq 2$, the equality $\kappa(Q_d) = \delta(Q_d) = d$ holds. (See Exercise No. 2 for the definition of Q_d .)
 - (b) A Halin graph H is defined as a graph obtained from a tree T without vertices of degree 2 by adding to it a cycle which joins all the leaves of T. Show that $\kappa(H) = \delta(H) = 3$ holds for any Halin graph H.

²One possibilty to solve this exercise (probably not the simplest one) is to show that the edges traversed according to following precedure P form a normal spanning tree with root r in a connected graph G.

P: Starting from r move alonge the edges of G, going whenever possible to a vertex not visited so far. If there is no such a vertex, go back along the edge by which the current vertex was first reached, unless the current vertex is r, in which case the procedure terminates.

Normal trees generate by the procedure P above are called depth first search trees.