Chapter 8: Well-quasi-ordering and tree-decompositions

Motivation: Trees have very nice combinatorial properties, many hard
problems are efficiently solvable if the input graph is a tree.

Idea: Detect tree-like structures in general graphs, define an appropriate
similarity measure of a graph to a tree. Exploit the similarity to extend
the nice combinatorial properties and behaviour of trees to general
graphs.

Definition 1

Let X be a ground set and < be a binary relation on X. =< is called a
quasi-ordering if it is reflexive and transitive. A quasi-ordering < on X
is called a well-quasi-ordering (WQO) and the elements of X are
well-quasi-ordered by < if for every infinite sequernce xg, x1, - .., Xn,
..., there exist two indices i, j, with i < j such that x; = x;. Such a pair
(xi, x;) is called a good pair of the sequence. A sequence containing a
good pair is a good sequence. Thus a quasi-ordering on X is a WQO iff
every infinite sequence is good. An infinite sequence is bad if it is not
good.

Chapter 8: Properties of WQOs and examples

Proposition 1

A quasi-ordering < on X is a WQO iff X contains neither an infinite
antichain (i.e. an infinite subset any two elements of which are not in
relation <) nor an infinite strictly decreasing sequence (i.e. a sequence
fulfilliong xo = x1 = ... = Xp = ...).

Corollary 2

If < is a WQO on X then every infinite sequence in X has an infinite
increasing subsequence.

Example:

Let X :=7Z and =<:=< (the usual “smaller than or equal to” relation
between real numbers).

< is a quasi-ordering on Z but not a WQO

—1,—-2,...,—n,...is a bad sequence.

Chapter 8: Properties of WQOs (contd)

Let < be a WQO on S. For two finite subsets A, B of X, A,B C X,
write A < B iff there is an injective mapping f: A — B such that

a = f(a), Ya € A. This extends < to a WQO on the set Pr(X) of finite
subsets of X.

Lemma 3
If < is a WQO on X, also its above defined extention on P¢(X) is a
WQO.

Chapter 8: Minors and topological minors (revisited)

Recall: A graph X is a topological minor of a graph Y iff Y contains a
subdivion TX of X as a subgraph.

| LA TTAH Y

X =TX ce Y

Definition 2

G = IX is an inflation of a graph X if G is obtained from X by replacing
(i) the vertices x of X by vertex-disjoint connected subgraphs G, for all
x € V(X), and (ii) the edges {x,y} if X by a nonempty set of
V(Gx)-V(Gy)-edges. Thus G is an IX iff V(G) = Uxcy(x) Vi, where
G[V4] is connected for all x € V(X) and

{x,y} € E(X) +> 3Vi-V,-edge in G.

V., x € X are called the branch sets of IX.

Observe: If G = [X is an inflation of X, then X arises as a contraction
of G.

Chapter 8: Minors and topological minors (contd.)

Recall: X is a minor of Y iff Y contrains an inflation /X as a subgraph;
notation X <X Y.

Thus X < Y «— 3¢: Y3 C V(Y) = V(X) such that (i) Vx € V(X),
Y[¢~1(x)] is connected and (ii) V{x, x"} € E(X),

Ja ¢~ (x)-¢71(x')-edge in E(Y).

¢~1(x) are the branch sets, for x € V(X),.

If the domain Y] of ¢ is the whole V(Y), i.e. Y1 = V(Y), and

Vx,x" € V(X), x # x/, the existence of an ¢~1(x)-¢~1(x')-edge in E(Y)
implies {x,x'} € E(X), then ¢ is called a contraction of Y onto X.

XN
J}\\C\R
~~

Chapter 8: Minors and topological minors (contd.)

Proposition 4

The minor relation < and the topological minor relation are partial
orderings on the class of finite graphs, i.e. both of them are reflexive,
antisymmetric and transitive.

If Gisan /X and 3x € V(X) such U =V, and |V, | =1, for all

y € V(X)\ {x}, then me denote X by G/U and vy for the vertex x of X
to which U is contracted. The rest of X can be seen as an induced
subgraph of G.

The smallest non trivial case is the contraction of an edge:

U= {u1,w}, {u1, w2} € E(G); notation X = G/e (instead of

X =G/U).

Chapter 8: Minors and topological minors (contd.)

Proposition 5

A finite graph G is an inflation IX of some (finite) graph X iff X can be
obtained from G by a sequence of edge contractions, i.e. iff there exist an
n €N, graphs Gy, Gy, ..., G, and edges e; € G;, forall i € 0, n — 1, such
that Gy = G, G, ~ X and G;+1 = G,-/e,-, VieO,n—1.

Corollary 6

Let X and Y be finite graphs. X is a monot of Y iff there exist an n € N
and graphs Gy, G, ..., G, such that Gy = G, G, ~ X and each Gj11 is
obtained from G; by deleting an edge, contracting an edge or deleting a
vertex.

Proposition 7

(i) Every subdivion TX of a graph X is also an inflation IX of X, thus
every topological minor of a graph is also its (“ordinary”) minor.

(i) If A(XC) < 3 then every IX contains a TX, thus every minor of
maximum degree 3 of a graph is also its topologiocal minor.

Theorem 8
(Kruskal 1960)
The finite trees are well-quasi-ordered by the topological minor relation.

Chapter 8: Tree-decomposition

Definition 3

Let G be a graph, T a tree and V = (Vi):cv (1) be a family of sets of
vertices Vy C V(G) indexed by the vertices of T. The pair (T,V) is
called a tree-decomposition of G if it satisfies the following three
conditions:

(Th) vV(G) = Utev(T) Vi,
(T2) Ye={x,y} € E(G) 3t € V(T) such that x € V, and y € V,,

(T3) th n Vt3 - Vtz whenever ti, tr, t3 € V(T) satisfy t € t1 Tts, i.e. tp
lies on the unique ty-ts-path in T.

V and G[V;], t € V(T), are called the parts of (T, V).

Lemma 9

(separation lemma)

Let G be a graph and (T,V) be a tree-decomposition of G. Let
{ti,t2} € E(T) and let Ty, Ty be the connected components of

T —{t1,t} witt; € V(T;), fori € {1,2}. Then V,, N V,, separates
Uy = UteV(Tl)Vt from U, := UteV(Tz)Vt in G.

Chapter 8: Tree-decomposition (contd.)

Lemma 10

(tree-decomposition of subgraphs)

Let G be a graph and (T,V) be a tree-decomposition of G. Let H C G
be a subgraph of G. Then the pair (T,(V: N V(H))ev(r)) is a tree
decomposition of H.

Lemma 11

(tree-decomposition of contractions)

Let G be a graph and (T,V) be a tree-decomposition of G. Assume that
G is an inflation of some graph H with branch sets U, C V(G), for

he V(H). Let f: V(G) — V(H) be the map assigning to each vertex

v € V(G) the index of the branch set containing it, i.e. v € Ug(,y holds
for all v € V(G). Yt € V(T) denote W; := {f(v): v € V;}, and let

W = (We)eev(r). Then (T, W) is a tree-decomposition of H.

Chapter 8: Tree-decomposition (contd.)

Lemma 12

Let G be a graph and (T,V) be a tree-decomposition of G. Given a set
W C V(G) then either (a) there is a t € V(T) such that W C V; or (b)
there exists vertices wy, wo € W and an edge {t1, t.} € e(T) such that
wy or wa lie outside the set Vi, N V4, and are separated by this set in G.

Corollary 13

Let G be a graph and (T,V) be a tree-decomposition of G. Any
complete sungraph of G is contained is some part of the
tree-decomposition (T, V).

Observation: In a tree-decomposition (T,V) of G the parts reflect the
structure of the tree T, so G resembles T to the extent that structure of
G within each part is negligible. Thus the smaller the parts the closer the
resemblance.

Chapter 8: Tree-width

Definition 4

Let G be a graph and (T,V) be a tree-decomposition of G. The width
of (T,V) is given as max{|V¢| —1: t € V(T)}. The tree-width tw(G)
of G is the smallest width of any tree-decomposition of G.

Remarks:

(1) Every graph has a trivial tree-decomposition (T,V) where T is a
singleton with V(T) = {x} and V, = V(G). Thus the tree-width
of a graph is well defined.

(2) The tree-width of any tree T eqaals 1: tw(T) = 1.

(3) By Lemma 10 and Lemma 11 the tree-width of a graph can never
be increased by deletions of edges and/or vertices or contractions.

Proposition 14
If H=< G, then tw(H) < tw(G), where < is the minor relation.

Chapter 8: Tree-width (contd.)

Theorem 15

(Robertson and Seymour 1990)

For every natural number k the graphs of tree-width smaller than or
equal to k are well-quasi-order by the minor relation.

Proposition 16

A graph G is chordal iff it has a tree-decomposition into complete parts.

Corollary 17
For any graph G the following holds:

tw(G) = min{w(H) —1: G C G, G is chordal} .

Chapter 8: Tree-width and forbidden minors

Proposition 18
A graph has tree-width less than 3 iff it does not have K, as a minor.

Theorem 19

(Robertson and Seymour 1986)

Consider an arbitrary (but fixed) graph H and the class Cy of all graphs
which do not have H as a minor. The tree-width is bounded over Cy iff
H is planar.

Theorem 20

(Robertson and Seymour 1986) For every natural number r, there exists
a natural number k such that every graph of tree-width at least k has an
r x r grid as a minor.

Chapter 8: Facts on tree-decomposition and tree-width

Definition 5

An equivalent defintion of tree-decomposition

Given a graph G = (V, E), a tree-decomposition of G is a pair (T, V)
where V = (Vi)iev(1) is a family of sets of vertices V; C V(G) indexed
by the vertices of T and

(T1) V(G) = Utew(T) Vi,

(T2) Ve={x,y} € E(G) 3t € V(T) such that x € V; and y € V,,

(T3) Vv € V(G) thevertices T' := {t € V(T): v € V;} build a subtree
of T.

V and G[V4], t € V(T), are called the parts of (T, V).
Vi, for t € V(T) are also called bags.

Observation: The tree-width of a graph is equal to the maximum
tree-width of its connected components.

Chapter 8: Facts on tree-decomposition and tree-width (contd.)

Proposition 21
Let G be a graph with E(G) # (. Then tw(G) =1 iff G is a forest.

Proposition 22
Every graph G with tw(G) = k has a vertex v € V(G) with deg(v) < k

Proposition 23
For a graph G with |V(G)| = n the equality tw(G) = n—1 holds iff G is
a clique.

Proposition 24

A graph G has tree-width at most 2 iff G is a subgraph of a
series-parallel graph.

See the definition of series-parallel graphs on the next slide.

Chapter 8: Facts on tree-decomposition and tree-width (contd.)

Definition 6
A multigraph is called a series-parallel graph if it is obtained from an
independent set by applying the following operations

(a) add a new vertex and connect it to an existing vertex by an edge,
(b) add a loop,

(c) add an edge parallel to an existing edge, or in other words duplicate
an existing edge,

(d) subdivide an edge by creating a vertex on the edge.

Proposition 25

It is NP-hard to determnie the tree-width tw(G) of an arbitrary input

graph G. There are algorithms which determine whether tw(G) < k in
time O(n*), where |G| = n and k € N is an arbitrary natural number .

Chapter 8: Computing tree-decompositions

Proposition 26
For a graph G with |G| = n and tw(G) = k

(i) a tree-decomposition of width k can be determined in O(n*+?(1))
time (Arnborg, Corneil, Proskurovski 1987),

(ii) a tree-decomposition of width k can be determined in 200 time
(Bodlaender 1996),

(iii) a tree decomposition of width 5k + 4 can be determined in 2°K)n
time (Bodlaender et al. 2013),

(iv) a tree decomposition of width O(klog(k)) can be determined in
time polynomial in n (Feige, Hajiaghai, Lee 2008),

Chapter 8: Nice tree-decompositions

Let G be a graph and (T,V) be a tree-decomposition of G. We consider
T to be rooted (at some arbitrary vertex r € V(T)).

Notations: Let T, be the subtree of T rooted at x, for any x € V(T).
y € V(T)is called a child of x € V(T) in T if {x,y} € E(T) and x lies
in the (unique) r-y-path in G, where r is the root of T.

Let Gy := U,eT, Vg, for any x € V(T).

Definition 7

Let G be a graph and (T,V) be a tree-decomposition of G with a rooted
T. The (T,V) is called a nice tree-decompoasition if every vertex
x € V(T) is one of the following 4 types:

> Leaf: x isaleafin T and |V,| =1.

> Introduce: x has one child y in T and V. =V, U {v} for some
v e V(G).

» Forget: x has one child y in T and V, =V, \ {v} for some
v e V(G).

> Join: x has two children y1, y» in T with V, =V, =V,,.

Chapter 8: Nice tree-decompositions and the max independent set
problem

Proposition 27

Let G be a graph and (T,V) be a tree-decomposition of G of width w
and O(n) vertices where n:= |V(G)|. (T,V) can be turned into a nice
tree decomposition of width w and O(n) vertices in O(n) time.

See N. Betzler, R. Niedermayer and J. Uhlmann, Tree decompositions of
graphs: saving memory in dynamic programming, Discrete
Optimization 3(3), 2006, 220-229.

Proposition 28

Let G be a graph and (T,V) be a nice tree-decomposition of G of width
w with V(T) = O(n) and n:=|G|. The maximum weighted
independent set problem in G, i.e. finding an independent set of
maximum weight in G for a given vertex weight function f: V(G) — R,
can be solved in O(2%n) time by dynamic programming.

