Chapter 8: Well-quasi-ordering and tree-decompositions

Motivation: Trees have very nice combinatorial properties, many hard problems are efficiently solvable if the input graph is a tree.
Idea: Detect tree-like structures in general graphs, define an appropriate similarity measure of a graph to a tree. Exploit the similarity to extend the nice combinatorial properties and behaviour of trees to general graphs.

Definition 1

Let X be a ground set and \preceq be a binary relation on X. \preceq is called a quasi-ordering if it is reflexive and transitive. A quasi-ordering \preceq on X is called a well-quasi-ordering (WQO) and the elements of X are well-quasi-ordered by \preceq if for every infinite sequernce $x_{0}, x_{1}, \ldots, x_{n}$, ..., there exist two indices i, j, with $i<j$ such that $x_{i} \preceq x_{j}$. Such a pair $\left(x_{i}, x_{j}\right)$ is called a good pair of the sequence. A sequence containing a good pair is a good sequence. Thus a quasi-ordering on X is a WQO iff every infinite sequence is good. An infinite sequence is bad if it is not good.

Chapter 8: Properties of WQOs and examples

Proposition 1

A quasi-ordering \preceq on X is a WQO iff X contains neither an infinite antichain (i.e. an infinite subset any two elements of which are not in relation \preceq) nor an infinite strictly decreasing sequence (i.e. a sequence fulfilliong $x_{0} \succ x_{1} \succ \ldots \succ x_{n} \succ \ldots$).

Corollary 2
If \preceq is a $W Q O$ on X then every infinite sequence in X has an infinite increasing subsequence.

Example:

Let $X:=\mathbb{Z}$ and $\preceq:=\leq$ (the usual "smaller than or equal to" relation between real numbers).
\leq is a quasi-ordering on \mathbb{Z} but not a WQO
$-1,-2, \ldots,-n, \ldots$ is a bad sequence.

Chapter 8: Properties of WQOs (contd)

Let \preceq be a WQO on S. For two finite subsets A, B of $X, A, B \subseteq X$, write $A \preceq B$ iff there is an injective mapping $f: A \rightarrow B$ such that $a \preceq f(a), \forall a \in A$. This extends \preceq to a WQO on the set $\mathcal{P}_{f}(X)$ of finite subsets of X.

Lemma 3
If \preceq is a $W Q O$ on X, also its above defined extention on $\mathcal{P}_{f}(X)$ is a WQO.

Chapter 8: Minors and topological minors (revisited)

Recall: A graph X is a topological minor of a graph Y iff Y contains a subdivion $T X$ of X as a subgraph.

Definition 2

$G=I X$ is an inflation of a graph X if G is obtained from X by replacing
(i) the vertices x of X by vertex-disjoint connected subgraphs G_{x}, for all $x \in V(X)$, and (ii) the edges $\{x, y\}$ if X by a nonempty set of $V\left(G_{x}\right)-V\left(G_{y}\right)$-edges. Thus G is an IX iff $V(G)=\dot{U}_{x \in V(X)} V_{x}$, where $G\left[V_{x}\right]$ is connected for all $x \in V(X)$ and
$\{x, y\} \in E(X) \leftrightarrow \exists V_{x}-V_{y}$-edge in G.
$V_{x}, x \in X$ are called the branch sets of $I X$.
Observe: If $G=I X$ is an inflation of X, then X arises as a contraction of G.

Chapter 8: Minors and topological minors (contd.)

Recall: X is a minor of Y iff Y constrains an inflation $I X$ as a subgraph; notation $X \preceq Y$.
Thus $X \preceq Y \longleftrightarrow \exists \phi: Y_{1} \subseteq V(Y) \rightarrow V(X)$ such that (i) $\forall x \in V(X)$, $Y\left[\phi^{-1}(x)\right]$ is connected and (ii) $\forall\left\{x, x^{\prime}\right\} \in E(X)$,
\exists a $\phi^{-1}(x)$ - $\phi^{-1}\left(x^{\prime}\right)$-edge in $E(Y)$.
$\phi^{-1}(x)$ are the branch sets, for $x \in V(X)$,.
If the domain Y_{1} of ϕ is the whole $V(Y)$, ie. $Y_{1}=V(Y)$, and $\forall x, x^{\prime} \in V(X), x \neq x^{\prime}$, the existence of an $\phi^{-1}(x)-\phi^{-1}\left(x^{\prime}\right)$-edge in $E(Y)$ implies $\left\{x, x^{\prime}\right\} \in E(X)$, then ϕ is called a contraction of Y onto X.

Chapter 8: Minors and topological minors (contd.)

Proposition 4

The minor relation \preceq and the topological minor relation are partial orderings on the class of finite graphs, i.e. both of them are reflexive, antisymmetric and transitive.

If G is an $I X$ and $\exists x \in V(X)$ such $U=V_{x}$ and $\left|V_{y}\right|=1$, for all $y \in V(X) \backslash\{x\}$, then me denote X by G / U and v_{U} for the vertex x of X to which U is contracted. The rest of X can be seen as an induced subgraph of G.
The smallest non trivial case is the contraction of an edge:
$U=\left\{u_{1}, u_{2}\right\},\left\{u_{1}, u_{2}\right\} \in E(G)$; notation $X=G / e$ (instead of $X=G / U)$.

Chapter 8: Minors and topological minors (contd.)

Proposition 5

A finite graph G is an inflation IX of some (finite) graph X iff X can be obtained from G by a sequence of edge contractions, i.e. iff there exist an $n \in \mathbb{N}$, graphs $G_{0}, G_{1}, \ldots, G_{n}$ and edges $e_{i} \in G_{i}$, forall $i \in \overline{0, n-1}$, such that $G_{0}=G, G_{n} \simeq X$ and $G_{i+1}=G_{i} / e_{i}, \forall i \in \overline{0, n-1}$.

Corollary 6

Let X and Y be finite graphs. X is a monot of Y iff there exist an $n \in \mathbb{N}$ and graphs $G_{0}, G_{1}, \ldots, G_{n}$ such that $G_{0}=G, G_{n} \simeq X$ and each G_{i+1} is obtained from G_{i} by deleting an edge, contracting an edge or deleting a vertex.

Proposition 7

(i) Every subdivion TX of a graph X is also an inflation IX of X, thus every topological minor of a graph is also its ("ordinary") minor.
(ii) If $\Delta(X C) \leq 3$ then every IX contains a $T X$, thus every minor of maximum degree 3 of a graph is also its topologiocal minor.
Theorem 8
(Kruskal 1960)
The finite trees are well-quasi-ordered by the topological minor relation.

Chapter 8: Tree-decomposition

Definition 3

Let G be a graph, T a tree and $\mathcal{V}=\left(V_{t}\right)_{t \in V(T)}$ be a family of sets of vertices $V_{t} \subseteq V(G)$ indexed by the vertices of T. The pair (T, \mathcal{V}) is called a tree-decomposition of G if it satisfies the following three conditions:
$\left(T_{1}\right) V(G)=\cup_{t \in v(T)} V_{t}$,
$\left(T_{2}\right) \forall e=\{x, y\} \in E(G) \exists t \in V(T)$ such that $x \in V_{t}$ and $y \in V_{t}$,
$\left(T_{3}\right) \quad V_{t_{1}} \cap V_{t_{3}} \subseteq V_{t_{2}}$ whenever $t_{1}, t_{2}, t_{3} \in V(T)$ satisfy $t_{2} \in t_{1} T t_{3}$, i.e. t_{2} lies on the unique $t_{1}-t_{3}$-path in T.
\mathcal{V} and $G\left[V_{t}\right], t \in V(T)$, are called the parts of (T, \mathcal{V}).
Lemma 9
(separation lemma)
Let G be a graph and (T, \mathcal{V}) be a tree-decomposition of G. Let $\left\{t_{1}, t_{2}\right\} \in E(T)$ and let T_{1}, T_{2} be the connected components of $T-\left\{t_{1}, t_{2}\right\}$ wit $t_{i} \in V\left(T_{i}\right)$, for $i \in\{1,2\}$. Then $V_{t_{1}} \cap V_{t_{2}}$ separates $U_{1}:=\cup_{t \in V\left(T_{1}\right)} V_{t}$ from $U_{2}:=\cup_{t \in V\left(T_{2}\right)} V_{t}$ in G.

Chapter 8: Tree-decomposition (contd.)

Lemma 10

(tree-decomposition of subgraphs)
Let G be a graph and (T, \mathcal{V}) be a tree-decomposition of G. Let $H \subseteq G$ be a subgraph of G. Then the pair $\left(T,\left(V_{t} \cap V(H)\right)_{t \in V(T)}\right)$ is a tree decomposition of H.

Lemma 11
(tree-decomposition of contractions)
Let G be a graph and (T, \mathcal{V}) be a tree-decomposition of G. Assume that G is an inflation of some graph H with branch sets $U_{h} \subseteq V(G)$, for $h \in V(H)$. Let $f: V(G) \rightarrow V(H)$ be the map assigning to each vertex $v \in V(G)$ the index of the branch set containing it, i.e. $v \in U_{f(v)}$ holds for all $v \in V(G) . \forall t \in V(T)$ denote $W_{t}:=\left\{f(v): v \in V_{t}\right\}$, and let $\mathcal{W}:=\left(W_{t}\right)_{t \in V(T)}$. Then (T, \mathcal{W}) is a tree-decomposition of H.

Chapter 8: Tree-decomposition (contd.)

Lemma 12
Let G be a graph and (T, \mathcal{V}) be a tree-decomposition of G. Given a set $W \subseteq V(G)$ then either (a) there is a $t \in V(T)$ such that $W \subseteq V_{t}$ or (b) there exists vertices $w_{1}, w_{2} \in W$ and an edge $\left\{t_{1}, t_{e}\right\} \in e(T)$ such that w_{1} or w_{2} lie outside the set $V_{t_{1}} \cap V_{t_{2}}$ and are separated by this set in G.

Corollary 13

Let G be a graph and (T, \mathcal{V}) be a tree-decomposition of G. Any complete sungraph of G is contained is some part of the tree-decomposition (T, \mathcal{V}).
Observation: In a tree-decomposition (T, \mathcal{V}) of G the parts reflect the structure of the tree T, so G resembles T to the extent that structure of G within each part is negligible. Thus the smaller the parts the closer the resemblance.

Chapter 8: Tree-width

Definition 4

Let G be a graph and (T, \mathcal{V}) be a tree-decomposition of G. The width of (T, \mathcal{V}) is given as $\max \left\{\left|V_{t}\right|-1: t \in V(T)\right\}$. The tree-width $t w(G)$ of G is the smallest width of any tree-decomposition of G.

Remarks:

(1) Every graph has a trivial tree-decomposition (T, \mathcal{V}) where T is a singleton with $V(T)=\{x\}$ and $V_{x}=V(G)$. Thus the tree-width of a graph is well defined.
(2) The tree-width of any tree T eqaals $1: ~ t w(T)=1$.
(3) By Lemma 10 and Lemma 11 the tree-width of a graph can never be increased by deletions of edges and/or vertices or contractions.

Proposition 14
If $H \preceq G$, then $t w(H) \leq t w(G)$, where \preceq is the minor relation.

Chapter 8: Tree-width (contd.)

Theorem 15
(Robertson and Seymour 1990)
For every natural number k the graphs of tree-width smaller than or equal to k are well-quasi-order by the minor relation.

Proposition 16

A graph G is chordal iff it has a tree-decomposition into complete parts.
Corollary 17
For any graph G the following holds:

$$
\operatorname{tw}(G)=\min \{\omega(H)-1: G \subseteq G, G \text { is chordal }\}
$$

Chapter 8: Tree-width and forbidden minors

Proposition 18

A graph has tree-width less than 3 iff it does not have K_{4} as a minor.
Theorem 19
(Robertson and Seymour 1986)
Consider an arbitrary (but fixed) graph H and the class \mathcal{C}_{H} of all graphs which do not have H as a minor. The tree-width is bounded over \mathcal{C}_{H} iff H is planar.

Theorem 20
(Robertson and Seymour 1986) For every natural number r, there exists a natural number k such that every graph of tree-width at least k has an $r \times r$ grid as a minor.

Chapter 8: Facts on tree-decomposition and tree-width

Definition 5

An equivalent defintion of tree-decomposition
Given a graph $G=(V, E)$, a tree-decomposition of G is a pair (T, \mathcal{V}) where $\mathcal{V}=\left(V_{t}\right)_{t \in V(T)}$ is a family of sets of vertices $V_{t} \subseteq V(G)$ indexed by the vertices of T and
$\left(T_{1}\right) V(G)=\cup_{t \in v(T)} V_{t}$,
$\left(T_{2}\right) \forall e=\{x, y\} \in E(G) \exists t \in V(T)$ such that $x \in V_{t}$ and $y \in V_{t}$,
$\left(T_{3}^{\prime}\right) \forall v \in V(G)$ thevertices $T^{\prime}:=\left\{t \in V(T): v \in V_{t}\right\}$ build a subtree of T.
\mathcal{V} and $G\left[V_{t}\right], t \in V(T)$, are called the parts of (T, \mathcal{V}).
V_{t}, for $t \in V(T)$ are also called bags.
Observation: The tree-width of a graph is equal to the maximum tree-width of its connected components.

Chapter 8: Facts on tree-decomposition and tree-width (contd.)

Proposition 21

Let G be a graph with $E(G) \neq \emptyset$. Then $t w(G)=1$ iff G is a forest.
Proposition 22
Every graph G with $t w(G)=k$ has a vertex $v \in V(G)$ with deg $(v) \leq k$

Proposition 23

For a graph G with $|V(G)|=n$ the equality $t w(G)=n-1$ holds iff G is a clique.

Proposition 24

A graph G has tree-width at most 2 iff G is a subgraph of a series-parallel graph.

See the definition of series-parallel graphs on the next slide.

Chapter 8: Facts on tree-decomposition and tree-width (contd.)

Definition 6

A multigraph is called a series-parallel graph if it is obtained from an independent set by applying the following operations
(a) add a new vertex and connect it to an existing vertex by an edge,
(b) add a loop,
(c) add an edge parallel to an existing edge, or in other words duplicate an existing edge,
(d) subdivide an edge by creating a vertex on the edge.

Proposition 25

It is NP-hard to determnie the tree-width $\mathrm{tw}(G)$ of an arbitrary input graph G. There are algorithms which determine whether $\operatorname{tw}(G) \leq k$ in time $O\left(n^{k}\right)$, where $|G|=n$ and $k \in \mathbb{N}$ is an arbitrary natural number.

Chapter 8: Computing tree-decompositions

Proposition 26

For a graph G with $|G|=n$ and $t w(G)=k$
(i) a tree-decomposition of width k can be determined in $O\left(n^{k+\theta(1)}\right)$ time (Arnborg, Corneil, Proskurovski 1987),
(ii) a tree-decomposition of width k can be determined in $2^{\tilde{O}\left(k^{3}\right)} n$ time (Bodlaender 1996),
(iii) a tree decomposition of width $5 k+4$ can be determined in $2^{O(k)} n$ time (Bodlaender et al. 2013),
(iv) a tree decomposition of width $O(k \log (k))$ can be determined in time polynomial in n (Feige, Hajiaghai, Lee 2008),

Chapter 8: Nice tree-decompositions

Let G be a graph and (T, \mathcal{V}) be a tree-decomposition of G. We consider T to be rooted (at some arbitrary vertex $r \in V(T)$).
Notations: Let T_{x} be the subtree of T rooted at x, for any $x \in V(T)$. $y \in V(T)$ is called a child of $x \in V(T)$ in T if $\{x, y\} \in E(T)$ and x lies in the (unique) r - y-path in G, where r is the root of T.
Let $G_{x}:=\cup_{z \in T_{x}} V_{z}$, for any $x \in V(T)$.

Definition 7

Let G be a graph and (T, \mathcal{V}) be a tree-decomposition of G with a rooted T. The (T, \mathcal{V}) is called a nice tree-decomposition if every vertex $x \in V(T)$ is one of the following 4 types:

- Leaf: x is a leaf in T and $\left|V_{x}\right|=1$.
- Introduce: x has one child y in T and $V_{x}=V_{y} \cup\{v\}$ for some $v \in V(G)$.
- Forget: x has one child y in T and $V_{x}=V_{y} \backslash\{v\}$ for some $v \in V(G)$.
- Join: x has two children y_{1}, y_{2} in T with $V_{x}=V_{y_{1}}=V_{y_{2}}$.

Chapter 8: Nice tree-decompositions and the max independent set problem

Proposition 27

Let G be a graph and (T, \mathcal{V}) be a tree-decomposition of G of width w and $O(n)$ vertices where $n:=|V(G)| .(T, \mathcal{V})$ can be turned into a nice tree decomposition of width w and $O(n)$ vertices in $O(n)$ time.
See N. Betzler, R. Niedermayer and J. Uhlmann, Tree decompositions of graphs: saving memory in dynamic programming, Discrete Optimization 3(3), 2006, 220-229.

Proposition 28

Let G be a graph and (T, \mathcal{V}) be a nice tree-decomposition of G of width w with $V(T)=O(n)$ and $n:=|G|$. The maximum weighted independent set problem in G, i.e. finding an independent set of maximum weight in G for a given vertex weight function $f: V(G) \rightarrow \mathbb{R}_{+}$, can be solved in $O\left(2^{w} n\right)$ time by dynamic programming.

