Chapter 8: Well-quasi-ordering and tree-decompositions

Motivation: Trees have very nice combinatorial properties, many hard problems are efficiently solvable if the input graph is a tree.

<u>Idea:</u> Detect tree-like structures in general graphs, define an appropriate similarity measure of a graph to a tree. Exploit the similarity to extend the nice combinatorial properties and behaviour of trees to general graphs.

Definition 1

Let X be a ground set and \leq be a binary relation on X. \leq is called a **quasi-ordering** if it is reflexive and transitive. A **quasi-ordering** \leq on X is called a **well-quasi-ordering** (WQO) and the elements of X are **well-quasi-ordered by** \leq if for every infinite sequence $x_0, x_1, \ldots, x_n, \ldots$, there exist two indices i, j, with i < j such that $x_i \leq x_j$. Such a pair (x_i, x_j) is called a **good pair** of the sequence. A sequence containing a good pair is a **good sequence**. Thus a quasi-ordering on X is a WQO iff every infinite sequence is good. An infinite sequence is **bad** if it is not good.

Chapter 8: Properties of WQOs and examples

Proposition 1

A quasi-ordering \leq on X is a WQO iff X contains neither an infinite antichain (i.e. an infinite subset any two elements of which are not in relation \leq) nor an infinite strictly decreasing sequence (i.e. a sequence fulfilliong $x_0 \succ x_1 \succ \ldots \succ x_n \succ \ldots$).

Corollary 2

If \leq is a WQO on X then every infinite sequence in X has an infinite increasing subsequence.

Example:

Let $X := \mathbb{Z}$ and $\leq := \leq$ (the usual "smaller than or equal to" relation between real numbers).

 \leq is a quasi-ordering on ${\mathbb Z}$ but not a WQO

 $-1, -2, \ldots, -n, \ldots$ is a bad sequence.

Chapter 8: Properties of WQOs (contd)

Let \leq be a WQO on *S*. For two finite subsets *A*, *B* of *X*, *A*, *B* \subseteq *X*, write $A \leq B$ iff there is an injective mapping $f: A \rightarrow B$ such that $a \leq f(a), \forall a \in A$. This extends \leq to a WQO on the set $\mathcal{P}_f(X)$ of finite subsets of *X*.

Lemma 3

If \leq is a WQO on X, also its above defined extention on $\mathcal{P}_f(X)$ is a WQO.

Chapter 8: Minors and topological minors (revisited)

Recall: A graph X is a topological minor of a graph Y iff Y contains a subdivion TX of X as a subgraph.

Definition 2

G = IX is an **inflation** of a graph X if G is obtained from X by replacing (i) the vertices x of X by vertex-disjoint connected subgraphs G_x , for all $x \in V(X)$, and (ii) the edges $\{x, y\}$ if X by a nonempty set of $V(G_x)-V(G_y)$ -edges. Thus G is an IX iff $V(G) = \bigcup_{x \in V(X)} V_x$, where $G[V_x]$ is connected for all $x \in V(X)$ and $\{x, y\} \in E(X) \leftrightarrow \exists V_x - V_y$ -edge in G. V_x , $x \in X$ are called **the branch sets** of IX.

Observe: If G = IX is an inflation of X, then X arises as a contraction of G.

Chapter 8: Minors and topological minors (contd.)

Recall: X is a minor of Y iff Y contrains an inflation IX as a subgraph; notation $X \leq Y$.

Thus
$$X \leq Y \longleftrightarrow \exists \phi \colon Y_1 \subseteq V(Y) \to V(X)$$
 such that (i) $\forall x \in V(X)$,
 $Y[\phi^{-1}(x)]$ is connected and (ii) $\forall \{x, x'\} \in E(X)$,
 $\exists a \phi^{-1}(x) \cdot \phi^{-1}(x')$ -edge in $E(Y)$.
 $\phi^{-1}(x)$ are the branch sets, for $x \in V(X)$,.
If the domain Y_1 of ϕ is the whole $V(Y)$, i.e. $Y_1 = V(Y)$, and
 $\forall x, x' \in V(X), x \neq x'$, the existence of an $\phi^{-1}(x) \cdot \phi^{-1}(x')$ -edge in $E(Y)$
implies $\{x, x'\} \in E(X)$, then ϕ is called a **contraction of** Y **onto** X .

Proposition 4

The minor relation \leq and the topological minor relation are partial orderings on the class of finite graphs, i.e. both of them are reflexive, antisymmetric and transitive.

If G is an IX and $\exists x \in V(X)$ such $U = V_x$ and $|V_y| = 1$, for all $y \in V(X) \setminus \{x\}$, then me denote X by G/U and v_U for the vertex x of X to which U is contracted. The rest of X can be seen as an induced subgraph of G.

The smallest non trivial case is the contraction of an edge: $U = \{u_1, u_2\}, \{u_1, u_2\} \in E(G)$; notation X = G/e (instead of X = G/U).

Chapter 8: Minors and topological minors (contd.)

Proposition 5

A finite graph G is an inflation IX of some (finite) graph X iff X can be obtained from G by a sequence of edge contractions, i.e. iff there exist an $n \in \mathbb{N}$, graphs G_0, G_1, \ldots, G_n and edges $e_i \in \underline{G_i}$, forall $i \in \overline{0, n-1}$, such that $G_0 = G$, $G_n \simeq X$ and $G_{i+1} = \underline{G_i}/e_i$, $\forall i \in \overline{0, n-1}$.

Corollary 6

Let X and Y be finite graphs. X is a monot of Y iff there exist an $n \in \mathbb{N}$ and graphs G_0, G_1, \ldots, G_n such that $G_0 = G, G_n \simeq X$ and each G_{i+1} is obtained from G_i by deleting an edge, contracting an edge or deleting a vertex.

Proposition 7

(i) Every subdivion TX of a graph X is also an inflation IX of X, thus every topological minor of a graph is also its ("ordinary") minor. (ii) If $\Delta(XC) \leq 3$ then every IX contains a TX, thus every minor of maximum degree 3 of a graph is also its topologiocal minor.

Theorem 8

(Kruskal 1960)

The finite trees are well-quasi-ordered by the topological minor relation.

Chapter 8: Tree-decomposition

Definition 3

Let G be a graph, T a tree and $\mathcal{V} = (V_t)_{t \in V(T)}$ be a family of sets of vertices $V_t \subseteq V(G)$ indexed by the vertices of T. The pair (T, \mathcal{V}) is called a **tree-decomposition of** G if it satisfies the following three conditions:

$$(T_1) \quad V(G) = \cup_{t \in v(T)} V_t,$$

 $(T_2) \ \forall e = \{x, y\} \in E(G) \ \exists t \in V(T) \text{ such that } x \in V_t \text{ and } y \in V_t,$

(T₃) $V_{t_1} \cap V_{t_3} \subseteq V_{t_2}$ whenever $t_1, t_2, t_3 \in V(T)$ satisfy $t_2 \in t_1 T t_3$, i.e. t_2 lies on the unique t_1 - t_3 -path in T.

 \mathcal{V} and $G[V_t]$, $t \in V(T)$, are called the parts of (T, \mathcal{V}) .

Lemma 9

(separation lemma) Let G be a graph and (T, V) be a tree-decomposition of G. Let $\{t_1, t_2\} \in E(T)$ and let T_1 , T_2 be the connected components of $T - \{t_1, t_2\}$ wit $t_i \in V(T_i)$, for $i \in \{1, 2\}$. Then $V_{t_1} \cap V_{t_2}$ separates $U_1 := \bigcup_{t \in V(T_1)} V_t$ from $U_2 := \bigcup_{t \in V(T_2)} V_t$ in G.

Chapter 8: Tree-decomposition (contd.)

Lemma 10

(tree-decomposition of subgraphs)

Let G be a graph and (T, V) be a tree-decomposition of G. Let $H \subseteq G$ be a subgraph of G. Then the pair $(T, (V_t \cap V(H))_{t \in V(T)})$ is a tree decomposition of H.

Lemma 11

(tree-decomposition of contractions)

Let G be a graph and (T, V) be a tree-decomposition of G. Assume that G is an inflation of some graph H with branch sets $U_h \subseteq V(G)$, for $h \in V(H)$. Let $f: V(G) \rightarrow V(H)$ be the map assigning to each vertex $v \in V(G)$ the index of the branch set containing it, i.e. $v \in U_{f(v)}$ holds for all $v \in V(G)$. $\forall t \in V(T)$ denote $W_t := \{f(v): v \in V_t\}$, and let $W := (W_t)_{t \in V(T)}$. Then (T, W) is a tree-decomposition of H.

Chapter 8: Tree-decomposition (contd.)

Lemma 12

Let G be a graph and (T, V) be a tree-decomposition of G. Given a set $W \subseteq V(G)$ then either (a) there is a $t \in V(T)$ such that $W \subseteq V_t$ or (b) there exists vertices $w_1, w_2 \in W$ and an edge $\{t_1, t_e\} \in e(T)$ such that w_1 or w_2 lie outside the set $V_{t_1} \cap V_{t_2}$ and are separated by this set in G.

Corollary 13

Let G be a graph and (T, V) be a tree-decomposition of G. Any complete sungraph of G is contained is some part of the tree-decomposition (T, V).

Observation: In a tree-decomposition (T, \mathcal{V}) of *G* the parts *reflect* the structure of the tree *T*, so *G* resembles *T* to the extent that structure of *G* within each part is negligible. Thus the smaller the parts the closer the resemblance.

Chapter 8: Tree-width

Definition 4

Let G be a graph and (T, V) be a tree-decomposition of G. The width of (T, V) is given as $\max\{|V_t| - 1: t \in V(T)\}$. The tree-width tw(G)of G is the smallest width of any tree-decomposition of G.

Remarks:

- Every graph has a trivial tree-decomposition (T, V) where T is a singleton with V(T) = {x} and V_x = V(G). Thus the tree-width of a graph is well defined.
- (2) The tree-width of any tree T eqaals 1: tw(T) = 1.
- (3) By Lemma 10 and Lemma 11 the tree-width of a graph can never be increased by deletions of edges and/or vertices or contractions.

Proposition 14

If $H \leq G$, then $tw(H) \leq tw(G)$, where \leq is the minor relation.

Chapter 8: Tree-width (contd.)

Theorem 15 (Robertson and Seymour 1990) For every natural number k the graphs of tree-width smaller than or equal to k are well-quasi-order by the minor relation.

Proposition 16

A graph G is chordal iff it has a tree-decomposition into complete parts.

Corollary 17

For any graph G the following holds:

 $tw(G) = \min\{\omega(H) - 1: G \subseteq G, G \text{ is chordal}\}.$

Chapter 8: Tree-width and forbidden minors

Proposition 18

A graph has tree-width less than 3 iff it does not have K_4 as a minor.

Theorem 19

(Robertson and Seymour 1986) Consider an arbitrary (but fixed) graph H and the class C_H of all graphs which do not have H as a minor. The tree-width is bounded over C_H iff H is planar.

Theorem 20

(Robertson and Seymour 1986) For every natural number r, there exists a natural number k such that every graph of tree-width at least k has an $r \times r$ grid as a minor.

Chapter 8: Facts on tree-decomposition and tree-width

Definition 5

An equivalent definition of tree-decomposition Given a graph G = (V, E), a tree-decomposition of G is a pair (T, V)where $V = (V_t)_{t \in V(T)}$ is a family of sets of vertices $V_t \subseteq V(G)$ indexed by the vertices of T and

$$\begin{array}{ll} (T_1) \quad V(G) = \cup_{t \in v(T)} V_t, \\ (T_2) \quad \forall e = \{x, y\} \in E(G) \; \exists t \in V(T) \; \text{such that} \; x \in V_t \; \text{and} \; y \in V_t, \\ (T'_3) \; \forall v \in V(G) \; \text{thevertices} \; T' := \{t \in V(T) \colon v \in V_t\} \; \text{build a subtree} \\ & \text{of } T. \end{array}$$

 \mathcal{V} and $G[V_t]$, $t \in V(T)$, are called the parts of (T, \mathcal{V}) . V_t , for $t \in V(T)$ are also called **bags**.

Observation: The tree-width of a graph is equal to the maximum tree-width of its connected components.

Chapter 8: Facts on tree-decomposition and tree-width (contd.)

Proposition 21

Let G be a graph with $E(G) \neq \emptyset$. Then tw(G) = 1 iff G is a forest.

Proposition 22

Every graph G with tw(G) = k has a vertex $v \in V(G)$ with $deg(v) \le k$

Proposition 23

For a graph G with |V(G)| = n the equality tw(G) = n - 1 holds iff G is a clique.

Proposition 24

A graph G has tree-width at most 2 iff G is a subgraph of a series-parallel graph.

See the definition of series-parallel graphs on the next slide.

Chapter 8: Facts on tree-decomposition and tree-width (contd.)

Definition 6

A multigraph is called a **series-parallel graph** if it is obtained from an independent set by applying the following operations

- (a) add a new vertex and connect it to an existing vertex by an edge,
- (b) add a loop,
- (c) add an edge parallel to an existing edge, or in other words duplicate an existing edge,
- (d) subdivide an edge by creating a vertex on the edge.

Proposition 25

It is NP-hard to determine the tree-width tw(G) of an arbitrary input graph G. There are algorithms which determine whether $tw(G) \le k$ in time $O(n^k)$, where |G| = n and $k \in \mathbb{N}$ is an arbitrary natural number.

Chapter 8: Computing tree-decompositions

Proposition 26

For a graph G with |G| = n and tw(G) = k

- (i) a tree-decomposition of width k can be determined in $O(n^{k+\theta(1)})$ time (Arnborg, Corneil, Proskurovski 1987),
- (ii) a tree-decomposition of width k can be determined in $2^{\tilde{O}(k^3)}n$ time (Bodlaender 1996),
- (iii) a tree decomposition of width 5k + 4 can be determined in $2^{O(k)}n$ time (Bodlaender et al. 2013),
- (iv) a tree decomposition of width $O(k \log(k))$ can be determined in time polynomial in n (Feige, Hajiaghai, Lee 2008),

Chapter 8: Nice tree-decompositions

Let G be a graph and (T, V) be a tree-decomposition of G. We consider T to be rooted (at some arbitrary vertex $r \in V(T)$).

Notations: Let T_x be the subtree of T rooted at x, for any $x \in V(T)$. $y \in V(T)$ is called a **child** of $x \in V(T)$ in T if $\{x, y\} \in E(T)$ and x lies in the (unique) r-y-path in G, where r is the root of T. Let $G_x := \bigcup_{z \in T_x} V_z$, for any $x \in V(T)$.

Definition 7

Let G be a graph and (T, V) be a tree-decomposition of G with a rooted T. The (T, V) is called a **nice tree-decomposition** if every vertex $x \in V(T)$ is one of the following 4 types:

- Leaf: x is a leaf in T and $|V_x| = 1$.
- ▶ Introduce: x has one child y in T and $V_x = V_y \cup \{v\}$ for some $v \in V(G)$.
- ▶ Forget: x has one child y in T and $V_x = V_y \setminus \{v\}$ for some $v \in V(G)$.
- ▶ Join: x has two children y_1 , y_2 in T with $V_x = V_{y_1} = V_{y_2}$.

Chapter 8: Nice tree-decompositions and the max independent set problem

Proposition 27

Let G be a graph and (T, V) be a tree-decomposition of G of width w and O(n) vertices where n := |V(G)|. (T, V) can be turned into a nice tree decomposition of width w and O(n) vertices in O(n) time.

See N. Betzler, R. Niedermayer and J. Uhlmann, Tree decompositions of graphs: saving memory in dynamic programming, *Discrete Optimization* 3(3), 2006, 220–229.

Proposition 28

Let G be a graph and (T, V) be a nice tree-decomposition of G of width w with V(T) = O(n) and n := |G|. The maximum weighted independent set problem in G, i.e. finding an independent set of maximum weight in G for a given vertex weight function $f : V(G) \to \mathbb{R}_+$, can be solved in $O(2^w n)$ time by dynamic programming.