
Chapter 8: Well-quasi-ordering and tree-decompositions

Motivation: Trees have very nice combinatorial properties, many hard
problems are efficiently solvable if the input graph is a tree.

Idea: Detect tree-like structures in general graphs, define an appropriate
similarity measure of a graph to a tree. Exploit the similarity to extend
the nice combinatorial properties and behaviour of trees to general
graphs.

Definition 1
Let X be a ground set and � be a binary relation on X . � is called a
quasi-ordering if it is reflexive and transitive. A quasi-ordering � on X
is called a well-quasi-ordering (WQO) and the elements of X are
well-quasi-ordered by � if for every infinite sequernce x0, x1, . . ., xn,
. . ., there exist two indices i , j , with i < j such that xi � xj . Such a pair
(xi , xj) is called a good pair of the sequence. A sequence containing a
good pair is a good sequence. Thus a quasi-ordering on X is a WQO iff
every infinite sequence is good. An infinite sequence is bad if it is not
good.



Chapter 8: Properties of WQOs and examples

Proposition 1
A quasi-ordering � on X is a WQO iff X contains neither an infinite
antichain (i.e. an infinite subset any two elements of which are not in
relation �) nor an infinite strictly decreasing sequence (i.e. a sequence
fulfilliong x0 � x1 � . . . � xn � . . .).

Corollary 2
If � is a WQO on X then every infinite sequence in X has an infinite
increasing subsequence.

Example:
Let X := Z and � :=≤ (the usual “smaller than or equal to” relation
between real numbers).
≤ is a quasi-ordering on Z but not a WQO
−1,−2, . . . ,−n, . . . is a bad sequence.



Chapter 8: Properties of WQOs (contd)

Let � be a WQO on S . For two finite subsets A, B of X , A,B ⊆ X ,
write A � B iff there is an injective mapping f : A → B such that
a � f (a), ∀a ∈ A. This extends � to a WQO on the set Pf (X ) of finite
subsets of X .

Lemma 3
If � is a WQO on X , also its above defined extention on Pf (X ) is a
WQO.



Chapter 8: Minors and topological minors (revisited)

Recall: A graph X is a topological minor of a graph Y iff Y contains a
subdivion TX of X as a subgraph.

Definition 2
G = IX is an inflation of a graph X if G is obtained from X by replacing
(i) the vertices x of X by vertex-disjoint connected subgraphs Gx , for all
x ∈ V (X ), and (ii) the edges {x , y} if X by a nonempty set of
V (Gx)-V (Gy )-edges. Thus G is an IX iff V (G ) = ∪̇x∈V (X )Vx , where
G [Vx ] is connected for all x ∈ V (X ) and
{x , y} ∈ E (X ) ↔ ∃Vx -Vy -edge in G .
Vx , x ∈ X are called the branch sets of IX .

Observe: If G = IX is an inflation of X , then X arises as a contraction
of G .



Chapter 8: Minors and topological minors (contd.)

Recall: X is a minor of Y iff Y contrains an inflation IX as a subgraph;
notation X � Y .

Thus X � Y ←→ ∃φ : Y1 ⊆ V (Y ) → V (X ) such that (i) ∀x ∈ V (X ),
Y [φ−1(x)] is connected and (ii) ∀{x , x �} ∈ E (X ),
∃ a φ−1(x)-φ−1(x �)-edge in E (Y ).
φ−1(x) are the branch sets, for x ∈ V (X ),.

If the domain Y1 of φ is the whole V (Y ), i.e. Y1 = V (Y ), and
∀x , x � ∈ V (X ), x �= x �, the existence of an φ−1(x)-φ−1(x �)-edge in E (Y )
implies {x , x �} ∈ E (X ), then φ is called a contraction of Y onto X .



Chapter 8: Minors and topological minors (contd.)

Proposition 4
The minor relation � and the topological minor relation are partial
orderings on the class of finite graphs, i.e. both of them are reflexive,
antisymmetric and transitive.

If G is an IX and ∃x ∈ V (X ) such U = Vx and |Vy | = 1, for all
y ∈ V (X ) \ {x}, then me denote X by G/U and vU for the vertex x of X
to which U is contracted. The rest of X can be seen as an induced
subgraph of G .

The smallest non trivial case is the contraction of an edge:
U = {u1, u2}, {u1, u2} ∈ E (G ); notation X = G/e (instead of
X = G/U).



Chapter 8: Minors and topological minors (contd.)

Proposition 5
A finite graph G is an inflation IX of some (finite) graph X iff X can be
obtained from G by a sequence of edge contractions, i.e. iff there exist an
n ∈ N, graphs G0, G1, . . ., Gn and edges ei ∈ Gi , forall i ∈ 0, n − 1, such
that G0 = G , Gn � X and Gi+1 = Gi/ei , ∀i ∈ 0, n − 1.

Corollary 6
Let X and Y be finite graphs. X is a monot of Y iff there exist an n ∈ N
and graphs G0, G1, . . ., Gn such that G0 = G , Gn � X and each Gi+1 is
obtained from Gi by deleting an edge, contracting an edge or deleting a
vertex.

Proposition 7
(i) Every subdivion TX of a graph X is also an inflation IX of X , thus
every topological minor of a graph is also its (“ordinary”) minor.
(ii) If Δ(XC ) ≤ 3 then every IX contains a TX , thus every minor of
maximum degree 3 of a graph is also its topologiocal minor.

Theorem 8
(Kruskal 1960)
The finite trees are well-quasi-ordered by the topological minor relation.



Chapter 8: Tree-decomposition

Definition 3
Let G be a graph, T a tree and V = (Vt)t∈V (T ) be a family of sets of
vertices Vt ⊆ V (G ) indexed by the vertices of T . The pair (T ,V) is
called a tree-decomposition of G if it satisfies the following three
conditions:

(T1) V (G ) = ∪t∈v(T )Vt ,

(T2) ∀e = {x , y} ∈ E (G ) ∃t ∈ V (T ) such that x ∈ Vt and y ∈ Vt ,

(T3) Vt1 ∩ Vt3 ⊆ Vt2 whenever t1, t2, t3 ∈ V (T ) satisfy t2 ∈ t1Tt3, i.e. t2
lies on the unique t1-t3-path in T .

V and G [Vt ], t ∈ V (T ), are called the parts of (T ,V).

Lemma 9
(separation lemma)
Let G be a graph and (T ,V) be a tree-decomposition of G . Let
{t1, t2} ∈ E (T ) and let T1, T2 be the connected components of
T − {t1, t2} wit ti ∈ V (Ti ), for i ∈ {1, 2}. Then Vt1 ∩ Vt2 separates
U1 := ∪t∈V (T1)Vt from U2 := ∪t∈V (T2)Vt in G .



Chapter 8: Tree-decomposition (contd.)

Lemma 10
(tree-decomposition of subgraphs)
Let G be a graph and (T ,V) be a tree-decomposition of G . Let H ⊆ G
be a subgraph of G . Then the pair

�
T , (Vt ∩ V (H))t∈V (T )

�
is a tree

decomposition of H.

Lemma 11
(tree-decomposition of contractions)
Let G be a graph and (T ,V) be a tree-decomposition of G . Assume that
G is an inflation of some graph H with branch sets Uh ⊆ V (G ), for
h ∈ V (H). Let f : V (G ) → V (H) be the map assigning to each vertex
v ∈ V (G ) the index of the branch set containing it, i.e. v ∈ Uf (v) holds
for all v ∈ V (G ). ∀t ∈ V (T ) denote Wt := {f (v) : v ∈ Vt}, and let
W := (Wt)t∈V (T ). Then (T ,W) is a tree-decomposition of H.



Chapter 8: Tree-decomposition (contd.)

Lemma 12
Let G be a graph and (T ,V) be a tree-decomposition of G . Given a set
W ⊆ V (G ) then either (a) there is a t ∈ V (T ) such that W ⊆ Vt or (b)
there exists vertices w1,w2 ∈ W and an edge {t1, te} ∈ e(T ) such that
w1 or w2 lie outside the set Vt1 ∩ Vt2 and are separated by this set in G .

Corollary 13
Let G be a graph and (T ,V) be a tree-decomposition of G . Any
complete sungraph of G is contained is some part of the
tree-decomposition (T ,V).
Observation: In a tree-decomposition (T ,V) of G the parts reflect the
structure of the tree T , so G resembles T to the extent that structure of
G within each part is negligible. Thus the smaller the parts the closer the
resemblance.



Chapter 8: Tree-width

Definition 4
Let G be a graph and (T ,V) be a tree-decomposition of G . The width
of (T ,V) is given as max{|Vt | − 1: t ∈ V (T )}. The tree-width tw(G )
of G is the smallest width of any tree-decomposition of G .

Remarks:

(1) Every graph has a trivial tree-decomposition (T ,V) where T is a
singleton with V (T ) = {x} and Vx = V (G ). Thus the tree-width
of a graph is well defined.

(2) The tree-width of any tree T eqaals 1: tw(T ) = 1.

(3) By Lemma 10 and Lemma 11 the tree-width of a graph can never
be increased by deletions of edges and/or vertices or contractions.

Proposition 14
If H � G , then tw(H) ≤ tw(G ), where � is the minor relation.



Chapter 8: Tree-width (contd.)

Theorem 15
(Robertson and Seymour 1990)
For every natural number k the graphs of tree-width smaller than or
equal to k are well-quasi-order by the minor relation.

Proposition 16
A graph G is chordal iff it has a tree-decomposition into complete parts.

Corollary 17
For any graph G the following holds:

tw(G ) = min{ω(H)− 1: G ⊆ G , G is chordal} .



Chapter 8: Tree-width and forbidden minors

Proposition 18
A graph has tree-width less than 3 iff it does not have K4 as a minor.

Theorem 19
(Robertson and Seymour 1986)
Consider an arbitrary (but fixed) graph H and the class CH of all graphs
which do not have H as a minor. The tree-width is bounded over CH iff
H is planar.

Theorem 20
(Robertson and Seymour 1986) For every natural number r , there exists
a natural number k such that every graph of tree-width at least k has an
r × r grid as a minor.



Chapter 8: Facts on tree-decomposition and tree-width

Definition 5
An equivalent defintion of tree-decomposition
Given a graph G = (V ,E ), a tree-decomposition of G is a pair (T ,V)
where V = (Vt)t∈V (T ) is a family of sets of vertices Vt ⊆ V (G ) indexed
by the vertices of T and

(T1) V (G ) = ∪t∈v(T )Vt ,

(T2) ∀e = {x , y} ∈ E (G ) ∃t ∈ V (T ) such that x ∈ Vt and y ∈ Vt ,

(T �
3) ∀v ∈ V (G ) thevertices T � := {t ∈ V (T ) : v ∈ Vt} build a subtree
of T .

V and G [Vt ], t ∈ V (T ), are called the parts of (T ,V).
Vt , for t ∈ V (T ) are also called bags.

Observation: The tree-width of a graph is equal to the maximum
tree-width of its connected components.



Chapter 8: Facts on tree-decomposition and tree-width (contd.)

Proposition 21
Let G be a graph with E (G ) �= ∅. Then tw(G ) = 1 iff G is a forest.

Proposition 22
Every graph G with tw(G ) = k has a vertex v ∈ V (G ) with deg(v) ≤ k

Proposition 23
For a graph G with |V (G )| = n the equality tw(G ) = n− 1 holds iff G is
a clique.

Proposition 24
A graph G has tree-width at most 2 iff G is a subgraph of a
series-parallel graph.

See the definition of series-parallel graphs on the next slide.



Chapter 8: Facts on tree-decomposition and tree-width (contd.)

Definition 6
A multigraph is called a series-parallel graph if it is obtained from an
independent set by applying the following operations

(a) add a new vertex and connect it to an existing vertex by an edge,

(b) add a loop,

(c) add an edge parallel to an existing edge, or in other words duplicate
an existing edge,

(d) subdivide an edge by creating a vertex on the edge.

Proposition 25
It is NP-hard to determnie the tree-width tw(G ) of an arbitrary input
graph G . There are algorithms which determine whether tw(G ) ≤ k in
time O(nk), where |G | = n and k ∈ N is an arbitrary natural number .



Chapter 8: Computing tree-decompositions

Proposition 26
For a graph G with |G | = n and tw(G ) = k

(i) a tree-decomposition of width k can be determined in O(nk+θ(1))
time (Arnborg, Corneil, Proskurovski 1987),

(ii) a tree-decomposition of width k can be determined in 2Õ(k3)n time
(Bodlaender 1996),

(iii) a tree decomposition of width 5k + 4 can be determined in 2O(k)n
time (Bodlaender et al. 2013),

(iv) a tree decomposition of width O(k log(k)) can be determined in
time polynomial in n (Feige, Hajiaghai, Lee 2008),



Chapter 8: Nice tree-decompositions

Let G be a graph and (T ,V) be a tree-decomposition of G . We consider
T to be rooted (at some arbitrary vertex r ∈ V (T )).

Notations: Let Tx be the subtree of T rooted at x , for any x ∈ V (T ).
y ∈ V (T ) is called a child of x ∈ V (T ) in T if {x , y} ∈ E (T ) and x lies
in the (unique) r -y -path in G , where r is the root of T .
Let Gx := ∪z∈TxVz , for any x ∈ V (T ).

Definition 7
Let G be a graph and (T ,V) be a tree-decomposition of G with a rooted
T . The (T ,V) is called a nice tree-decomposition if every vertex
x ∈ V (T ) is one of the following 4 types:

� Leaf: x is a leaf in T and |Vx | = 1.

� Introduce: x has one child y in T and Vx = Vy ∪ {v} for some
v ∈ V (G ).

� Forget: x has one child y in T and Vx = Vy \ {v} for some
v ∈ V (G ).

� Join: x has two children y1, y2 in T with Vx = Vy1 = Vy2 .



Chapter 8: Nice tree-decompositions and the max independent set
problem

Proposition 27
Let G be a graph and (T ,V) be a tree-decomposition of G of width w
and O(n) vertices where n := |V (G )|. (T ,V) can be turned into a nice
tree decomposition of width w and O(n) vertices in O(n) time.

See N. Betzler, R. Niedermayer and J. Uhlmann, Tree decompositions of
graphs: saving memory in dynamic programming, Discrete
Optimization 3(3), 2006, 220–229.

Proposition 28
Let G be a graph and (T ,V) be a nice tree-decomposition of G of width
w with V (T ) = O(n) and n := |G |. The maximum weighted
independent set problem in G , i.e. finding an independent set of
maximum weight in G for a given vertex weight function f : V (G ) → R+,
can be solved in O(2wn) time by dynamic programming.


