(7) Properties of almost all graphs

Recall: A graph property is a class of graphs which is closed under isomorphism, i.e. one which contains with every graph G also the graphs isomorphic to G.
Let $p: \mathbb{N} \rightarrow[0,1]$ be a fixed function (possibly constant) and let \mathcal{P} be a graph property.
Consider $\lim _{n \rightarrow \infty} \mathbb{P}[G \in \mathcal{P}]$ for $G \in \mathcal{G}(n, p)$.
If $\lim _{n \rightarrow \infty} \mathbb{P}[G \in \mathcal{P}]=1$, then $G \in \mathcal{P}$ for almost all $G \in \mathcal{G}(n, p)$, or $G \in \mathcal{P}$ almost surely in $\mathcal{G}(n, p)$.
If $\lim _{n \rightarrow \infty} \mathbb{P}[G \in \mathcal{P}]=0$, then almost no $G \in \mathcal{G}(n, p)$ has the property $\mathcal{P}, G \notin \mathcal{P}$ almost surely in $\mathcal{G}(n, p)$.

Proposition 12.

For every constant $p \in(0,1)$ and every given graph H, almost every $G \in \mathcal{G}(n, p)$ contains an induced copy of H.

(7) Properties of almost all graphs (contd.)

Let $i, j \in \mathbb{N} . \mathcal{P}_{i, j}$ is the property that the considered graph G contains a vertex $v \in V(G) \backslash(U \dot{U} W)$ for every pair of disjoint vertex sets U, W
$(U, W \subset V(G))$ with $|U| \leq i,|W| \leq j$, with the property that $\{v, u\} \in E(G), \forall u \in U$, and $\{v, w\} \notin E(G), \forall w \in W$.

Lemma 13.
For any constant $p \in(0,1)$ and for all $i, j \in \mathbb{N}$ almost every $G \in \mathcal{G}(n, p)$ has the property $\mathcal{P}_{i j}$.

Corollary 14.

For any constant $p \in(0,1)$ and for each $k \in \mathbb{N}$ almost every $G \in \mathcal{G}(n, p)$ is k-connected.

Proposition 15.

For any constant $p \in(0,1)$ and for each $\epsilon \in \mathbb{R}, \epsilon>0$, almost every $G \in \mathcal{G}(n, p)$ fulfills

$$
\chi(G) Y \frac{\log (1-q)}{2+\epsilon} \frac{n}{\log n}
$$

where $q:=1-p$.

(7) Threshold functions and second moments

Definition 3.

A function $t: \mathbb{N} \rightarrow(0,+\infty)$ is called a threshold function for a graph property \mathcal{P} if the following holds for every $p: \mathbb{N} \rightarrow(0,1)$ and
$G \in \mathcal{G}(n, p):$

$$
\lim _{n \rightarrow \infty} \mathbb{P}[G \in \mathcal{P}]= \begin{cases}0 & \text { if } \lim _{n \rightarrow \infty} \frac{p(n)}{t(n)}=0 \\ 1 & \text { if } \lim _{n \rightarrow \infty} \frac{p(n)}{t(n)}=\infty\end{cases}
$$

If \mathcal{P} has a threshold function t, then for any positive constant c also $c t$ is a threshold function for \mathcal{P}.

Definition 4.

\mathcal{P} is an increasing graph property if it closed under the addition of edges and vertices, i.e. if $G \in \mathcal{P}$ and $G \subseteq H$ imply $H \in \mathcal{P}$.
Remark: Bollobás and Thomason (1987) have shown that all increasing graphs properties have threshold functions.
B. Bollobás and A.G. Thomason, Threshold functions, Combinatorica 7, 1987, 35-38.

(7) Threshold functions and second moments (contd.)

For a considered graph property \mathcal{P} introduce an apropriate random variable X. eg. the indicator random variable of \mathcal{P} in $G(n, p)$, $X(G) \in\{0,1\}, X(G)=1$ iff $G \in \mathcal{P}$. Then cast \mathcal{P} by means of X, eg. $\mathcal{P}=\{G: X(G)=1\}$.
In order to prove that t is a threshold function for \mathcal{P} we show
(i) almost no $G \in \mathcal{G}(n, p)$ has the property \mathcal{P} if p is small as compared to t, i.e. if $\lim _{n \rightarrow \infty} p / t=0$.
(ii) almost every $G \in \mathcal{G}(n, p)$ has the property \mathcal{P} if p is large as compared to t, i.e. if $\lim _{n \rightarrow \infty} p / t=+\infty$.

Ad (i) Compute an upper bound on $E(X)$, show that the bound tends to 0 as $n \rightarrow \infty$ and use Markov's inequality $\mathbb{P}[X \geq 1] \leq \mathbb{E}(x)$.
Ad (ii) In order to show that $\mathbb{P}[X \geq 1]$ is large, it is not enough to bound $\mathbb{E}(X)$ from below. Use Chebyshev's inequality.

Lemma 16.

(Chebyshev's Inequality)
For any $\lambda>0$ and for any random variable X with expectation $\mathbb{E}(X)=: \mu$ and variance σ^{2}, the inequality $\mathbb{P}[|X-\mu| \geq \lambda] \leq \frac{\sigma^{2}}{\lambda^{2}}$ holds.

(7) Threshold functions and second moments (contd.)

Lemma 17.

Let X be a nonnegative random variable in $\mathcal{G}(n, p)$ with expectation $\mathbb{E}(X)=: \mu>0$, for all large n, and variance σ^{2} such that $\lim _{n \rightarrow \infty} \frac{\sigma^{2}}{\mu^{2}}=0$. Then $X(G)>0$ holds for almost all $G \in \mathcal{G}(n, p)$.
Let H be a graph with $k:=|V(H)|$ and $I:=|E(H)|$. Let \mathcal{P}_{H} be the property of containing a subgraph isomorphic to H.
Let $X(G)$ be the number of subgraphs of G which are isomorphic to H for $G \in \mathcal{G}(n, p)$.
Let $\mathcal{H}:=\left\{H^{\prime}: H^{\prime} \simeq H, V\left(H^{\prime}\right) \subseteq\{0,1, \ldots, n-1\}\right\}$. Then $E(X)=|\mathcal{H}| p^{\prime} \leq h\binom{n}{k} p^{\prime}$, where h is the number of graphs on k vertices $\{0,1, \ldots, k-1\}$ which are isomorphic to H.

Lemma 18.

If $t(n)=n^{-\frac{1}{\epsilon(H)}}$, where $\epsilon(H)=\frac{|E(H)|}{|V(H)|}=\frac{1}{k}$, and $p(n)$ fulfills $\lim _{n \rightarrow \infty} p(n) / t(n)=0$, then almost no $G \in \mathcal{G}(n, p)$ lies in \mathcal{P}_{H}.

(7) Threshold functions and second moments (contd.)

Lemma 19,

If $t(n)=n^{-\frac{1}{\epsilon^{\prime}(H)}}$ with $\epsilon^{\prime}(H):=\max \left\{\epsilon\left(H^{\prime}\right): H^{\prime} \subseteq H\right\}$, and $p(n)$ fulfills $\lim _{n \rightarrow \infty} p(n) / t(n)=+\infty$, then almost every $G \in \mathcal{G}(n, p)$ lies in \mathcal{P}_{H}.

Theorem 20.
Let H be a graph with $|E(H)| \geq 1$. Then $t(n)=n^{-\frac{1}{\epsilon^{\prime}(H)}}$ is a threshold function for \mathcal{P}_{H}.

Definition 5.

A graph H is called balanced if $\epsilon^{\prime}(H)=\epsilon(H)$ holds.
Examples: trees, cycles.

Corollary 21.

If $k \in \mathbb{N}, k \geq 3$, then $t(n)=n^{-1}$ is a threshold function for the property of containing aa cycle on k vertices, for $G \in \mathcal{G}(n, p)$. ($t(n)$ does not depend on $k!)$
Corollary 22.
Let T be a tree with $V(T)=: k \geq 2$. Then $t(n)=n^{-\frac{k}{k-1}}$ is a threshold function for the property of containing an isomorphic copy of T, i.e. $G \in \mathcal{P}_{T}$, for $G \in \mathcal{G}(n, p)$.

