(7) Properties of almost all graphs

Recall: A graph property is a class of graphs which is closed under isomorphism, i.e. one which contains with every graph G also the graphs isomorphic to G.

Let $p \colon \mathbb{N} \to [0,1]$ be a fixed function (possibly constant) and let \mathcal{P} be a graph property.

Consider $\lim_{n\to\infty} \mathbb{P}[G \in \mathcal{P}]$ for $G \in \mathcal{G}(n, p)$.

If $\lim_{n\to\infty} \mathbb{P}[G \in \mathcal{P}] = 1$, then $G \in \mathcal{P}$ for almost all $G \in \mathcal{G}(n, p)$, or $G \in \mathcal{P}$ almost surely in $\mathcal{G}(n, p)$.

If $\lim_{n\to\infty} \mathbb{P}[G \in \mathcal{P}] = 0$, then almost no $G \in \mathcal{G}(n, p)$ has the property \mathcal{P} , $G \notin \mathcal{P}$ almost surely in $\mathcal{G}(n, p)$.

Proposition 12.

For every constant $p \in (0,1)$ and every given graph H, almost every $G \in \mathcal{G}(n,p)$ contains an induced copy of H.

(7) Properties of almost all graphs (contd.)

Let $i, j \in \mathbb{N}$. $\mathcal{P}_{i,j}$ is the property that the considered graph G contains a vertex $v \in V(G) \setminus (U \cup W)$ for every pair of disjoint vertex sets U, W $(U, W \subset V(G))$ with $|U| \leq i$, $|W| \leq j$, with the property that $\{v, u\} \in E(G), \forall u \in U$, and $\{v, w\} \notin E(G), \forall w \in W$.

Lemma 13.

For any constant $p \in (0, 1)$ and for all $i, j \in \mathbb{N}$ almost every $G \in \mathcal{G}(n, p)$ has the property \mathcal{P}_{ij} .

Corollary 14.

For any constant $p \in (0,1)$ and for each $k \in \mathbb{N}$ almost every $G \in \mathcal{G}(n,p)$ is k-connected.

Proposition 15.

For any constant $p \in (0, 1)$ and for each $\epsilon \in \mathbb{R}$, $\epsilon > 0$, almost every $G \in \mathcal{G}(n, p)$ fulfills

$$\chi(G)Y\frac{\log(1-q)}{2+\epsilon}\frac{n}{\log n}$$

where q := 1 - p.

(7) Threshold functions and second moments

Definition 3.

A function $t: \mathbb{N} \to (0, +\infty)$ is called a threshold function for a graph property \mathcal{P} if the following holds for every $p: \mathbb{N} \to (0, 1)$ and $G \in \mathcal{G}(n, p)$:

$$\lim_{n \to \infty} \mathbb{P}[G \in \mathcal{P}] = \begin{cases} 0 & \text{if } \lim_{n \to \infty} \frac{p(n)}{t(n)} = 0\\ 1 & \text{if } \lim_{n \to \infty} \frac{p(n)}{t(n)} = \infty \end{cases}$$

If \mathcal{P} has a threshold function t, then for any positive constant c also ct is a threshold function for \mathcal{P} .

Definition 4.

 \mathcal{P} is an increasing graph property if it closed under the addition of edges and vertices, i.e. if $G \in \mathcal{P}$ and $G \subseteq H$ imply $H \in \mathcal{P}$.

Remark: Bollobás and Thomason (1987) have shown that all increasing graphs properties have threshold functions.

B. Bollobás and A.G. Thomason, Threshold functions, *Combinatorica* **7**, 1987, 35–38.

(7) Threshold functions and second moments (contd.)

For a considered graph property \mathcal{P} introduce an apropriate random variable X. eg. the indicator random variable of \mathcal{P} in G(n, p), $X(G) \in \{0,1\}, X(G) = 1$ iff $G \in \mathcal{P}$. Then cast \mathcal{P} by means of X, eg. $\mathcal{P} = \{G : X(G) = 1\}$.

In order to prove that t is a threshold function for ${\mathcal P}$ we show

- (i) almost no $G \in \mathcal{G}(n, p)$ has the property \mathcal{P} if p is small as compared to t, i.e. if $\lim_{n\to\infty} p/t = 0$.
- (ii) almost every $G \in \mathcal{G}(n, p)$ has the property \mathcal{P} if p is large as compared to t, i.e. if $\lim_{n\to\infty} p/t = +\infty$.
- Ad (i) Compute an upper bound on E(X), show that the bound tends to 0 as $n \to \infty$ and use Markov's inequality $\operatorname{IP}[X \ge 1] \le \operatorname{IE}(x)$.
- Ad (ii) In order to show that $\mathbb{P}[X \ge 1]$ is large, it is not enough to bound $\mathbb{E}(X)$ from below. Use Chebyshev's inequality.

Lemma 16.

(Chebyshev's Inequality)

For any $\lambda > 0$ and for any random variable X with expectation $\mathbb{E}(X) =: \mu$ and variance σ^2 , the inequality $\mathbb{P}[|X - \mu| \ge \lambda] \le \frac{\sigma^2}{\lambda^2}$ holds.

(7) Threshold functions and second moments (contd.)

Lemma 17.

Let X be a nonnegative random variable in $\mathcal{G}(n, p)$ with expectation $\mathbb{E}(X) =: \mu > 0$, for all large n, and variance σ^2 such that $\lim_{n\to\infty} \frac{\sigma^2}{\mu^2} = 0$. Then X(G) > 0 holds for almost all $G \in \mathcal{G}(n, p)$.

Let *H* be a graph with k := |V(H)| and l := |E(H)|. Let \mathcal{P}_H be the property of containing a subgraph isomorphic to *H*.

Let X(G) be the number of subgraphs of G which are isomorphic to H for $G \in \mathcal{G}(n, p)$.

Let $\mathcal{H} := \{H' : H' \simeq H, V(H') \subseteq \{0, 1, \dots, n-1\}\}$. Then $E(X) = |\mathcal{H}|p' \le h\binom{n}{k}p'$, where *h* is the number of graphs on *k* vertices $\{0, 1, \dots, k-1\}$ which are isomorphic to *H*.

Lemma 18. If $t(n) = n^{-\frac{1}{\epsilon(H)}}$, where $\epsilon(H) = \frac{|E(H)|}{|V(H)|} = \frac{1}{k}$, and p(n) fulfills $\lim_{n\to\infty} p(n)/t(n) = 0$, then almost no $G \in \mathcal{G}(n, p)$ lies in \mathcal{P}_H .

(7) Threshold functions and second moments (contd.)

Lemma 19 If $t(n) = n^{-\frac{1}{\epsilon'(H)}}$ with $\epsilon'(H) := \max\{\epsilon(H') : H' \subseteq H\}$, and p(n) fulfills $\lim_{n\to\infty} p(n)/t(n) = +\infty$, then almost every $G \in \mathcal{G}(n, p)$ lies in \mathcal{P}_H .

Theorem 20.

Let H be a graph with $|E(H)| \ge 1$. Then $t(n) = n^{-\frac{1}{\epsilon'(H)}}$ is a threshold function for \mathcal{P}_{H} .

Definition 5.

A graph H is called **balanced** if $\epsilon'(H) = \epsilon(H)$ holds.

Examples: trees, cycles.

Corollary 21.

If $k \in \mathbb{N}$, $k \ge 3$, then $t(n) = n^{-1}$ is a threshold function for the property of containing aa cycle on k vertices, for $G \in \mathcal{G}(n, p)$. (t(n) does not depend on k!

Corollary 22.

Let T be a tree with $V(T) =: k \ge 2$. Then $t(n) = n^{-\frac{k}{k-1}}$ is a threshold function for the property of containing an isomorphic copy of T, i.e. $G \in \mathcal{P}_T$, for $G \in \mathcal{G}(n, p)$.