(Chapter 7) Random graphs: definitions and elementary concepts

Let $V=\{0,1, \ldots, n-1\}$ be a set of vertices, let \mathcal{G} be the set of graphs G with vertex set \mathcal{V}, i.e. $V(G)=V$.
Goal: Turn \mathcal{G} into a probability space!
Let $[V]^{2}:=\{\{i, j\}: i, j \in V, i \neq j\}$. Let $p \in[0,1], p \in \mathbb{R}$.
For each $e \in[V]^{2}$ decide by some random experiment whether $e \in E(G)$; the experiments are performed independently for each edge and the probability of success, i.e. accepting e as an edge, equals p.
Elementary events: a fixed graph $G_{0}, m:=E\left(G_{0}\right)$, is generated by this series of random experiments with probability $p^{m} q^{\binom{n}{2}-m}$, where $q:=1-p$.
Remark: The probability that the result of the series of experiments is a graph isomorphic to G is larger!
Theoretical question:: Existence of such a probability measure, $\mathcal{G}(n, p)$ on \mathcal{G} for which every independent edge occurs independently with probability p.
(7) Random graphs: definitions and elementary concepts

Definition 1.

$\forall e \in[V]^{2}$ let $\Omega_{e}:=\left\{0_{e}, 1_{e}\right\}$ be equiped with the probability measure $\mathbb{P}\left(\left\{1_{e}\right\}\right)=p, \mathbb{P}\left(\left\{0_{e}\right\}\right)=q=1-p$. The product probability space $\Omega:=\prod_{e \in[V]^{2}} \Omega_{e}$ is denoted by $\mathcal{G}(n, p)$.
For any $\omega=\left(\omega_{e}\right)_{e \in[V]^{2}} \in \Omega$ we have $\omega_{e} \in\left\{1_{e}, 0_{e}\right\}$ for each $e \in[V]^{2}$. A graph G with $V(G)=V$ and $E(G)=\left\{e \in[V]^{2}: \omega_{e}=1\right\}$ is called a random graph on V with edge probability p.

Any set of graphs with vertex set V is an event in $\mathcal{G}(n, p)$.
Example: $A_{e}:=\left\{\omega \in \Omega: \omega_{e}=1\right\}$ is the set of graphs with $e \in E(G)$ or the event that e is an edge of the random graph G.

Proposition 1.
The events $A_{e}, e \in[V]^{2}$, are independent and occur with probability p.

Lemma 2.

For all inetgers n, k with $n \geq k \geq 2$, the probability that $G \in \mathcal{G}(n, p)$ contains a set of k independent vertices or a k-clique is at most

$$
\mathbb{P}[\alpha(G) \geq k] \leq\binom{ n}{k} q^{\binom{k}{2}} \text { or } \mathbb{P}[\omega(G) \geq k] \leq\binom{ n}{k} p^{\binom{k}{2}}, \text { respectively. }
$$

(7) Ramsey numbers

Theorem 3.

For every $r \in \mathbb{N}$, there exists an $n \in \mathbb{N}$ such that every graph of order ta least n contains either K_{r} or \bar{K}_{r} as an induced subgraph.

Definition 2.
For every $r \in \mathbb{N}$ the smallest $n \in \mathbb{N}$ such that every graph G with $|V(G)| \geq n$ contains either K_{r} or \bar{K}_{r} as an induced subgraph is called the n-th Ramsey number, $\mathbf{R}(r)$.
Let H be a graph. The Ramsey number $\mathbf{R}(H)$ is the smallest $n \in \mathbb{N}$ such that every graph G with $|V(G)| \geq n$ either G or \bar{G} contains an induced subgraph isomorphic to H.
Let H_{1}, H_{2} be a pair of graphs. The Ramsey number $\mathbf{R}\left(H_{1}, H_{2}\right)$ is the smallest $n \in \mathbb{N}$ such that for every graph G with $|V(G)| \geq n$ either G contains an induced subgraph isomorphic to H_{1} or \bar{G} contains an induced subgraph isomorphic to H_{2}. H .

(7) Ramsey numbers (contd.)

Corollary 4.

For any $r \in \mathbb{N}, R(r) \leq 2^{2 r-3}$ holds.

Proposition 5.

Let $s, t \in \mathbb{N}$ be arbitrary natural numbers and T be a tree with t vertices. Then $R\left(T, K_{s}\right)=(t-1)(s-1)+1$.

Theorem 6.
(Erdös 1947) For every integer k with $k \geq 3, R(k) \geq 2^{\frac{k}{2}}$ holds.

(7) Computing expectations

Let X be a graph invariant, e.g. the average degree, the connectivity, the girth, the chromatic number etc.
Then X is a random variable on $\mathcal{G}(n, p), X: \mathcal{G}(n, p) \rightarrow \mathbb{R}, G \mapsto X(G)$. The expecation of X is given as $\mathbb{E}(X)=\sum_{G \in \mathcal{G}(n, p)} \mathbb{P}(G) X(G)$. If $X(G) \in \mathbb{Z}_{+}$, for all $G \in \mathcal{G}(n, p)$, then

$$
\mathbb{E}(X)=\sum_{k \in \mathbb{Z}_{+}} k \mathbb{P}(X(G)=k)=\sum_{k \in \mathbb{Z}_{+}} \mathbb{P}(X(G) \geq k)
$$

Lemma 7.

(Markov's inequality)
Let $X \geq 0$ be a random variable on $\mathcal{G}(n, p)$ and $\alpha>0$ a real number. Then $\mathbb{P}[X \geq \alpha] \leq \frac{\mathbb{E}(X)}{\alpha}$, provided that $\mathbb{E}(X)$ exists.

Lemma 8.

The expected number of cycle of length k in $\mathcal{G}(n, p)$ equals $\frac{(n)_{k}}{2 k} p^{k}$, where $(n)_{k}:=n(n-1) \ldots(n-k+1)$ for all $n, k \in \mathbb{N}, 3 \leq k \leq n$.

(7) The probabilistic method

Idea: In order to prove the existence of an object with a certain property consider a probabilistic space on the nonempty set of relevant objects and show that the probability of existence of an object with the considered probybility in this space is positive.

Theorem 9.

(Theorem of Erdös, 1959)
For every $k \in \mathbb{N}$, there exists a graph G with $g(G)>k$ and $\chi(G)>k$.

Lemma 10.

Let $k \in \mathbb{N}$ be arbitrary but fixed and let $p(n)$ be a function of n such that $p(n) \geq(6 k \ln (n)) n^{-1}$ holds for n large, i.e. for all $n \in \mathbb{N}$ with $n \geq n_{0}$, where n_{0} is a certain fixed threshold. Then for $G \in \mathcal{G}(n, P)$ we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\alpha(G) \geq \frac{1}{2} \frac{n}{k}\right]=0 .
$$

Corollary 11.

There are graphs G with arbitrary large girth $g(G)$ and arbitrary large invariants $\kappa(G), \epsilon(G)$ and $\delta(G)$.

