(Chapter 7) Random graphs: definitions and elementary concepts

Let $V = \{0, 1, ..., n-1\}$ be a set of vertices, let \mathcal{G} be the set of graphs G with vertex set \mathcal{V} , i.e. V(G) = V.

Goal: Turn \mathcal{G} into a probability space!

Let $[V]^2 := \{\{i, j\} : i, j \in V, i \neq j\}$. Let $p \in [0, 1], p \in \mathbb{R}$.

For each $e \in [V]^2$ decide by some random experiment whether $e \in E(G)$; the experiments are performed independently for each edge and the probability of success, i.e. accepting e as an edge, equals p.

Elementary events: a fixed graph G_0 , $m := E(G_0)$, is generated by this series of random experiments with probability $p^m q^{\binom{n}{2}-m}$, where

q := 1 - p.

Remark: The probability that the result of the series of experiments is a graph isomorphic to G is larger!

Theoretical question: Existence of such a probability measure, $\mathcal{G}(n, p)$ on \mathcal{G} for which every independent edge occurs independently with probability p.

(7) Random graphs: definitions and elementary concepts

Definition 1.

 $\begin{array}{l} \forall e \in [V]^2 \ \text{let} \ \Omega_e := \{0_e, 1_e\} \ \text{be equiped with the probability measure} \\ \mathbb{P}(\{1_e\}) = p, \ \mathbb{P}(\{0_e\}) = q = 1 - p. \ \text{The product probability space} \\ \Omega := \prod_{e \in [V]^2} \Omega_e \ \text{is denoted by} \ \mathcal{G}(n, p). \end{array}$

For any $\omega = (\omega_e)_{e \in [V]^2} \in \Omega$ we have $\omega_e \in \{1_e, 0_e\}$ for each $e \in [V]^2$. A graph G with V(G) = V and $E(G) = \{e \in [V]^2 : \omega_e = 1\}$ is called a random graph on V with edge probability p.

Any set of graphs with vertex set V is an event in $\mathcal{G}(n, p)$. **Example:** $A_e := \{ \omega \in \Omega : \omega_e = 1 \}$ is the set of graphs with $e \in E(G)$ or the event that e is an edge of the random graph G.

Proposition 1.

The events A_e , $e \in [V]^2$, are independent and occur with probability p.

Lemma 2.

For all inetgers n, k with $n \ge k \ge 2$, the probability that $G \in \mathcal{G}(n, p)$ contains a set of k independent vertices or a k-clique is at most

$$\mathbb{P}[\alpha(G) \ge k] \le {\binom{n}{k}}q^{\binom{k}{2}}$$
 or $\mathbb{P}[\omega(G) \ge k] \le {\binom{n}{k}}p^{\binom{k}{2}}$, respectively.

(7) Ramsey numbers

Theorem 3.

For every $r \in \mathbb{N}$, there exists an $n \in \mathbb{N}$ such that every graph of order ta least n contains either K_r or \overline{K}_r as an induced subgraph.

Definition 2.

For every $r \in \mathbb{N}$ the smallest $n \in \mathbb{N}$ such that every graph G with $|V(G)| \ge n$ contains either K_r or \overline{K}_r as an induced subgraph is called the *n*-th Ramsey number, $\mathbf{R}(r)$.

Let *H* be a graph. The **Ramsey number** $\mathbf{R}(H)$ is the smallest $n \in \mathbb{N}$ such that every graph *G* with $|V(G)| \ge n$ either *G* or \overline{G} contains an induced subgraph isomorphic to *H*.

Let H_1 , H_2 be a pair of graphs. The **Ramsey number** $\mathbf{R}(H_1, H_2)$ is the smallest $n \in \mathbb{N}$ such that for every graph G with $|V(G)| \ge n$ either G contains an induced subgraph isomorphic to H_1 or \overline{G} contains an induced subgraph isomorphic to H_2 . H.

(7) Ramsey numbers (contd.)

Corollary 4. For any $r \in \mathbb{N}$, $R(r) \leq 2^{2r-3}$ holds.

Proposition 5.

Let $s, t \in \mathbb{N}$ be arbitrary natural numbers and T be a tree with t vertices. Then $R(T, K_s) = (t - 1)(s - 1) + 1$.

Theorem 6.

(Erdös 1947) For every integer k with $k \ge 3$, $R(k) \ge 2^{\frac{k}{2}}$ holds.

(7) Computing expectations

Let X be a graph invariant, e.g. the average degree, the connectivity, the girth, the chromatic number etc.

Then X is a random variable on $\mathcal{G}(n, p)$, $X : \mathcal{G}(n, p) \to \mathbb{R}$, $G \mapsto X(G)$. The expecation of X is given as $\mathbb{E}(X) = \sum_{G \in \mathcal{G}(n,p)} \mathbb{P}(G)X(G)$. If $X(G) \in \mathbb{Z}_+$, for all $G \in \mathcal{G}(n, p)$, then

$$\mathbb{E}(X) = \sum_{k \in \mathbb{Z}_+} k \mathbb{P}(X(G) = k) = \sum_{k \in \mathbb{Z}_+} \mathbb{P}(X(G) \ge k)$$

Lemma 7. (Markov's inequality) Let $X \ge 0$ be a random variable on $\mathcal{G}(n, p)$ and $\alpha > 0$ a real number. Then $\mathbb{P}[X \ge \alpha] \le \frac{\mathbb{E}(X)}{\alpha}$, provided that $\mathbb{E}(X)$ exists.

Lemma 8.

The expected number of cycle of length k in $\mathcal{G}(n, p)$ equals $\frac{(n)_k}{2k}p^k$, where $(n)_k := n(n-1)\dots(n-k+1)$ for all $n, k \in \mathbb{N}$, $3 \le k \le n$.

(7) The probabilistic method

Idea: In order to prove the existence of an object with a certain property consider a probabilistic space on the nonempty set of relevant objects and show that **the probability of existence of an object with the considered probybility in this space is positive**.

Theorem 9.

(Theorem of Erdös, 1959) For every $k \in \mathbb{N}$, there exists a graph G with g(G) > k and $\chi(G) > k$.

Lemma 10.

Let $k \in \mathbb{N}$ be arbitrary but fixed and let p(n) be a function of n such that $p(n) \ge (6k \ln(n))n^{-1}$ holds for n large, i.e. for all $n \in \mathbb{N}$ with $n \ge n_0$, where n_0 is a certain fixed threshold. Then for $G \in \mathcal{G}(n, P)$ we have

$$\lim_{n\to\infty} \mathbb{IP}\left[\alpha(G) \geq \frac{1}{2}\frac{n}{k}\right] = 0.$$

Corollary 11.

There are graphs G with arbitrary large girth g(G) and arbitrary large invariants $\kappa(G)$, $\epsilon(G)$ and $\delta(G)$.