(Chapter 3) Hamiltonicity: sufficient conditions

Theorem 4.

(Chvátal, Erdös 1972)
Consider a graph G with $n:=|G| \geq 3$. The inequality $\kappa(G) \geq \alpha(G)$ implies the hamiltonicity of G.
$(\alpha(G)$ is the stability number of G, i.e.
$\alpha(G):=\max \{|S|: S \subseteq V(G)$ and $G[S]$ has no edges $\}$.)
The result of Theorem 4 is best possible:
(i) There exists a graph G with $\kappa(G)=\alpha(G)-1$ which is not Hamiltonian (e.g. the Petersen graph or $K_{r, r+1}$, as discussed in the practicaL)
(ii) The statement also does not hold if $\kappa(G)$ is replaced by $\lambda(G)$.

Corollary 5.

There exists an $O(m n)$ algorithm which either constructs a Hamiltonian cycle in G (with $n:=|V(G), m:=|E(G)|)$ or finds a stable set S and a separating set T in G such that $|T|<|S|$ holds.

(Chapter 3) Hamiltonicity: sufficient conditions

Theorem 6.
(Bondy, 1978)
Let G be a graph with $|G| \geq 3$ and $\operatorname{deg}(u)+\operatorname{deg}(v) \geq|G|$ for all $u, v \in V(G)$ with $\{u, v\} \notin E(G)$. Then $\kappa(G) \geq \alpha(G)$ holds.

(Chapter 3) Finding long cycles in graphs

The problem of determining the length of a longest cycle in a graph G is $N P$-hard.

We assume w.l.o.g. that G is 2-connected.
Theorem 7.
(Ore 1960, Bermond 1976, Linial 1976)
Let $d \in \mathbb{N}$ and let G be a 2-connected graph such that $\forall u, v \in V(G)$ with $\{u, v\} \notin E(G), \operatorname{deg}(u)+\operatorname{deg}(v) \geq d$ holds. Then there exists a cycle of length at least $\min \{n, d\}$ in G, where $n:=|G|$.

Theorem 8.

(Bauer, Broersma, Veldman and Rao 1989)
If G is a 2 -connected graph with n vertices and connectivity $\kappa(G)$ such that $\operatorname{deg}(x)+\operatorname{deg}(y)+\operatorname{deg}(z) \geq n+\kappa(G)$ for any triple of independent vertices $x, y, z \in V(G)$, then G is Hamiltonian.

Proof in Journal of Combinatorial Theory, Series B 47(2), 1989, 237-243.

(Chapter 3) Hamiltonian cycles and degree sequences

Definition 1.

If G is a graph with $n:=|G|$ and vertex degrees $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$, then the n-tuple $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is called the degree sequence of G. An arbitrary sequence of natural numbers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is called a
Hamiltonian sequence if every graph with n vertices and degree sequence $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ which is pointwise not smaller than $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ (i.e. $d_{i} \geq a_{i}, \forall i \in 1, n$), is Hamiltonian.
The degree sequence of a graph is unique while there may be different enumerations of the vertices all of them leading to the same degree sequence.

Theorem 9.

(Chvátal 1972)
A sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of natural numbers with
$0<a_{1} \leq a_{2} \leq \ldots \leq a_{n}<n$ and $n \geq 3$ is Hamiltonian iff $a_{i} \leq i$ implies $a_{n-i} \geq n-i$, for every $i<\frac{n}{2}$.

