(Chapter 3) Hamiltonicity: sufficient conditions

Theorem 4.

(Chvátal, Erdös 1972) Consider a graph G with $n := |G| \ge 3$. The inequality $\kappa(G) \ge \alpha(G)$ implies the hamiltonicity of G. $(\alpha(G) \text{ is the stability number of } G, \text{ i.e.}$ $\alpha(G) := \max\{|S| : S \subseteq V(G) \text{ and } G[S] \text{ has no edges}\}.)$

The result of Theorem 4 is best possible:

- (i) There exists a graph G with $\kappa(G) = \alpha(G) 1$ which is not Hamiltonian (e.g. the Petersen graph or $K_{r,r+1}$, as discussed in the practicaL)
- (ii) The statement also does not hold if $\kappa(G)$ is replaced by $\lambda(G)$.

Corollary 5.

There exists an O(mn) algorithm which either constructs a Hamiltonian cycle in G (with n := |V(G), m := |E(G)|) or finds a stable set S and a separating set T in G such that |T| < |S| holds.

(Chapter 3) Hamiltonicity: sufficient conditions

Theorem 6.

(Bondy, 1978) Let G be a graph with $|G| \ge 3$ and $deg(u) + deg(v) \ge |G|$ for all $u, v \in V(G)$ with $\{u, v\} \notin E(G)$. Then $\kappa(G) \ge \alpha(G)$ holds.

(Chapter 3) Finding long cycles in graphs

The problem of determining the length of a longest cycle in a graph G is NP-hard.

We assume w.l.o.g. that G is 2-connected.

Theorem 7.

(Ore 1960, Bermond 1976, Linial 1976) Let $d \in \mathbb{N}$ and let G be a 2-connected graph such that $\forall u, v \in V(G)$ with $\{u, v\} \notin E(G)$, $deg(u) + deg(v) \ge d$ holds. Then there exists a cycle of length at least min $\{n, d\}$ in G, where n := |G|.

Theorem 8.

(Bauer, Broersma, Veldman and Rao 1989) If G is a 2-connected graph with n vertices and connectivity $\kappa(G)$ such that deg(x) + deg(y) + deg(z) $\geq n + \kappa(G)$ for any triple of independent vertices x, y, z $\in V(G)$, then G is Hamiltonian.

Proof in *Journal of Combinatorial Theory, Series B* **47(2)**, 1989, 237–243.

(Chapter 3) Hamiltonian cycles and degree sequences

Definition 1.

If G is a graph with n := |G| and vertex degrees $d_1 \le d_2 \le \ldots \le d_n$, then the n-tuple (d_1, d_2, \ldots, d_n) is called **the degree sequence** of G. An arbitrary sequence of natural numbers (a_1, a_2, \ldots, a_n) is called a **Hamiltonian sequence** if every graph with n vertices and degree sequence (d_1, d_2, \ldots, d_n) which is pointwise not smaller than (a_1, a_2, \ldots, a_n) (i.e. $d_i \ge a_i$, $\forall i \in 1, n$), is Hamiltonian.

The degree sequence of a graph is unique while there may be different enumerations of the vertices all of them leading to the same degree sequence.

Theorem 9.

(Chvátal 1972) A sequence $(a_1, a_2, ..., a_n)$ of natural numbers with $0 < a_1 \le a_2 \le ... \le a_n < n$ and $n \ge 3$ is Hamiltonian iff $a_i \le i$ implies $a_{n-i} \ge n-i$, for every $i < \frac{n}{2}$.