Advanced and algorithmic graph theory TU Graz, summer term 2020

General definitions and notations

Definition 1 An undirected graph (often also simply called graph) G is an ordered pair (V, E), where V is the so-called set of vertices and $E \subseteq\{\{u, v\}: u, v \in V, u \neq v\}=: \mathcal{P}_{2}(V)$ is the set of edges. Thus the edges of a graph are two-element subsets of the set of vertices of the graph. Given a set V we denote by $\mathcal{P}_{2}(V)$ as above the set of two-element subsets of V.
A directed graph, or briefly digraph, G is a pair (V, E), where V is the so-called set of vertices and $E \subseteq V \times V$ is the set of arcs. For a given graph (digraph) G we denote by $V(G)$ and $E(G)$ its set of vertices and its set of edges (arcs), respectively.
The order of a graph (digraph) G is the cardinality $|V(G)|$ of its vertex set $V(G)$.
An edge e of a graph is denoted by $e:=\{u, v\}$ and an arc of a digraph is denoted by (u, v); u and v are called end-vertices of e. and We say that vertex $u(v)$ is incident with edge (arc) e and that the vertices u and v are adjacent vertices or neighbors. Moreover we say that e is an edge at $u(v)$ or that arc e starts at u and ends at v respectively. Two edges e, f are called adjacent edges if $e \neq f$ and $e \cap f \neq \emptyset$. The set of neighbors of a vertex v in G is denoted by $N_{G}(v)$, or briefly by $N(v)$, if there is no ambiguity about the underlying graph G. Give a set $U \subseteq V(G)$ we define $N(U)$ to be the set of the neighbors of U by $N(U):=\left(\cup_{v \in U} N(v)\right) \backslash U$.
The degree $\operatorname{deg}_{G}(v)($ or $\operatorname{deg}(v))$ of some vertex v in a graph G is $\operatorname{defined}$ as $\operatorname{deg}(v):=$ $|N(v)|$. A vertex with degree equal to 0 is called an isolated vertex in G. The minimum degree $\delta(G)$ of a graph G is defined as $\delta(G):=\min _{v \in V(G)} \operatorname{deg}(v)$. Analogoulsy, the maximum degree $\Delta(G)$ of a graph G is defined as $\Delta(G):=\max _{v \in V(G)} \operatorname{deg}(v)$. The average degree $d(G)$ of a graph G is defined as $d(G):=\frac{1}{|V(G)|} \sum_{v \in V(G)} \operatorname{deg}(v)$. The density $\varepsilon(G)$ of a graph G is defined as $\varepsilon(G):=\frac{|E(G)|}{|V(G)|}$.
Question 1 Recall the handshake lemma and derive a simple relationship between $d(G)$ and $\varepsilon(G)$.

For some $k \in \mathbb{Z}_{+}$, a k-regular graph G is a graph with $\operatorname{deg}(v)=k$, for all $v \in V(G)$. A 3 -regular graph is also called a cubic graph.
A graph G is called a complete graph if all vertices in $V(G)$ are pairwise adjacent. The complete graph of order n is denoted by K_{n} (for some $n \in \mathbb{N}$).
A set $A \subseteq V(G)$ is called an independent set in G if no two vertices of A are adjacent. The independence number of a graph G is denoted by $\alpha(G)$ and is defined as the largest $k \in \mathbb{N}$ such that there exists an independent set of cardinality k in G, i.e.

$$
\alpha(G):=\max \{|A|: A \subseteq V(G), A \text { is an independent set in } G\} .
$$

Definition $2 G$ and G^{\prime} are called isomorphic graphs iff there eists a bijection $\phi: V(G) \rightarrow$ $V\left(G^{\prime}\right)$ such that $\{u, v\} \in E(G) \Longleftrightarrow\{\phi(u), \phi(v)\} \in E\left(G^{\prime}\right)$. In this case ϕ is called an isomorphism of G and G^{\prime}. If G and G^{\prime} are isomporphic we denote $G \simeq G^{\prime}$. Usually we make no difference between two isomorphic graphs and denote $G=G^{\prime}$ instead of $G \simeq G^{\prime}$. If $G=G^{\prime}$ then an isomorphism ϕ of G and G^{\prime} is called an automorphism.

A class of graphs which is closed under isomorphism is called a graph property. For example, containing a triangle is a graph property. A triangle in a graph G is a triple of pairwise distinct vertices $v_{1}, v_{2}, v_{3} \in V(G)$ such that any two of them are adjacent.

Question 2 Can you specify other graph properties?
A mapping taking graphs as arguments is called a graph invariant iff it assigns equal images (values) to isomorphic graphs. For example the number of vertices and the number of edges in a graph are graph invariantes.

Question 3 Can you specify other graph invariants?

Definition 3 Consider two graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$. The union of G and G^{\prime} is defined as $G \cup G^{\prime}:=\left(V \cup V^{\prime}, E \cup E^{\prime}\right)$, the intersection of G and G^{\prime} is defined as $G \cap G^{\prime}:=\left(V \cap V^{\prime}, E \cap E^{\prime}\right)$.
The graphs G and G^{\prime} are called disjoint graphs if $V(G) \cap V\left(G^{\prime}\right)=\emptyset$. Given two disjoint graphs G and G^{\prime} their product $G * G^{\prime}$ is obtained from $G \cup G^{\prime}$ by adding to it the edges of the form $\left\{v, v^{\prime}\right\}$ for all $v \in V(G), v^{\prime} \in V\left(G^{\prime}\right)$.

Question 4 Draw the graph $K_{2} * K_{3}$? Is this product a complete graph?
The complement G^{C} of a graph G is defined as $G^{C}:=\left(V(G), \mathcal{P}_{2}(V(G)) \backslash E(G)\right)$. The line graph $L(G)$ of a graph G is defined as $L(G):=(E(G),\{\{e, f\}: e, f \in E(G), e \cap f \neq \emptyset\})$. If $V \subseteq V^{\prime}$ and $E \subseteq E^{\prime}$ we say that G is a subgraph of G^{\prime} or G^{\prime} is a supergraph of G and denote $G \subseteq G^{\prime}$. If $G \subseteq G^{\prime}$ and $G \neq G^{\prime}$ we say that G is a proper subgraph of G^{\prime} and denote $G \subsetneq G^{\prime}$.
If $G \subseteq G^{\prime}$ and $E(G)$ contains all edges $\{u, v\}$ of $E\left(G^{\prime}\right)$ with $u \in V(G)$ and $v \in V(G)$ we call G an induced subgraph of G^{\prime}. In this case we say that V induces G in G^{\prime} and denote $G=G^{\prime}[V]$.

Question 5 Given that G is an induced subgraph of G^{\prime}. Does the following equality hold

$$
E(G)=\{\{u, v\}: u \in V, v \in V\} \cap E\left(G^{\prime}\right) ?
$$

A subgraph G is called a spanning subgraph of G^{\prime} iff $G \subseteq G^{\prime}$ and $V(G)=V\left(G^{\prime}\right)$.
Definition 4 Given a graph G and a set $U \subseteq V(G)$ we write $G-U:=G[V \backslash U]$. If U is a singleton, i.e. $U=\{v\}$ for some $v \in V(G)$ we write $G-v$ instead of $G-\{v\}$. We also write $G-G^{\prime}$ instead of $G-V\left(G^{\prime}\right)$. For some $F \subseteq \mathcal{P}_{2}(V(G))$ we write $G-F:=(V(G), E(G) \backslash F)$ and $G+F:=(V(G), E(G) \cup F)$. If F is a singleton, i.e. $F=\{e\}$ for some $e \in \mathcal{P}_{2}(V(G))$, we write $G+e$ and $G-e$ instead of $G+\{e\}$ and $G-\{e\}$, respectively.

Definition 5 A graph G is called edge-maximal with respect to some graph property P iff G itself has the property P, but the graph $G+\{u, v\}$ does not have property P, for all $u, v \in V(G)$ such that $\{u, v\} \notin E(G)$. If we say a graph G is be maximal (minimal) with respect to some property P without any further specification, then we mean that G has the property P but no supergraph (subgraph) of G has it. Analogosly, if we speak of a maximal or minimal set of vertices of edges the considered order relation is simply the set-inclusion.

Question 6 Let P be the property "contains a triangle" and let P^{\prime} the property"does not contain a triangle" or equivalently "is triangle-free". Give a graph of order 6 which is minimal with respect to P. Give a graph of order 6 which maximal with respect to P^{\prime}

Definition $6 A$ path P is a graph $P=(V, E)$ with $V=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ and $E=\left\{\left\{x_{i-1}, x_{i}\right\}: i \in\{1,2, \ldots, k\}\right\}$, where all $x_{i}, i \in\{0,1, \ldots, k\}$, are pairwise disjoint and $k \in \mathbb{Z}_{+}$. Analogoulsy, a directed path (dipath) P is defined as a digraph $P=(V, E)$ with $V=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$ and $E=\left\{\left(x_{i-1}, x_{i}\right): i \in\{1,2, \ldots, k\}\right\}$, where all $x_{i}, i \in\{0,1, \ldots, k\}$, are pairwise disjoint. The vertices x_{1}, \ldots, x_{k-1} are called internal vertices of the path (dipath) P, x_{0} and x_{k} are called start-vertex of P and end-vertex of P, respectively, or end-vertices of P commonly. We say that the end-vertices of path P are joined (connected) by P and P joins (connects) its end-vertices. The length of the path (dipath) is the number k of its edges (arcs). Often a path (dipath) of length k is denoted by P^{k}. Thus a path (dipath) of length 0 is just a single vertex (or the complete graph K_{1}; such a path (dipath) is called a trivial path (trivial dipath). Often we refer to the path (dipath) P as above by the natural sequence of its vertices and denote $P=x_{0}, x_{1}, \ldots, x_{k}$. Let $P=x_{0}, x_{1}, \ldots, x_{k}$. We distinguish the following subpaths of P :
$P x_{i}:=x_{0}, x_{1}, \ldots, x_{i}, x_{i} P=x_{i}, x_{i+1}, \ldots, x_{k}, x_{i} P x_{j}:=x_{i}, x_{i+1}, \ldots, x_{j-1}, x_{j}$, and $\stackrel{\circ}{P}=$ x_{1}, \ldots, x_{k-1}, for $i, j \in\{0,1, \ldots, k\}$.
Given a graph G and a path P we say that P is a path in G iff $P \subseteq G$, i.e. if the path P is a subgraph of G.
A walk W of length $k, k \in \mathbb{N}$, in a graph G is a non-empty alternating sequence $v_{0} . e_{0}, v_{1}, e_{1}, \ldots, e_{k-1}, v_{k}$ of vertices and edges in G such that $e_{i}=\left\{v_{i}, v_{i+1}\right\} \in E(G)$, for all $i \in\{0,1, \ldots, k-1\}$. If $v_{0}=v_{k}$ the walk is called a closed walk. If the vertices of the walk W are pairwise distinct, then W defines a path in G.
Consider a graph G and two subsets $A, B \subseteq V(G)$. A path $x_{0}, x_{1}, \ldots, x_{k}$ in G is called an A - B-path if $V(P) \cap A=\left\{x_{0}\right\}$ and $V(P) \cap B=\left\{x_{k}\right\}^{2}$. If $A=\{a\}$ and/or $B=\{b\}$ we write $a-B$-path, A-b-path or $a-b$-path, respectively. Two or more paths are independent paths i iff none of them contains an inner vertex of another.
Given a graph H we call a path $P=x_{0}, \ldots, x_{k}$ an H-path if P is non-trivial (i.e. $k \geq 1$) and $V(P) \cap V(H)=\left\{x_{0}, x_{k}\right\}$.
If $P=x_{0}, \ldots, x_{k-1}$ is a path and $k \geq 3$, then $C:=P+\left\{x_{k-1}, x_{0}\right\}$ is called a cycle. Sometimes we denote $C=x_{0}, x_{1}, \ldots, x_{k-1}, x_{0}$. The length of a cycle is the number of its edges. A cycle of length k is often denoted by C^{k}. A cycle in a graph G is a subgraph of G which is a cycle. The minimum length of a cycle in a graph G is called the girth of G and is denoted by $g(G)$. The maximum length of a cycle in a graph G is called the circumference of G and is denoted by $\operatorname{circ}(G)$. If G contains no cycle we set $g(G)=\infty$ and $\operatorname{circ}(G)=0$. An edge joining two vertices of a cycle C which is not an edge of C is called a chord of the cycle C. Thus an induced cycle in G (i.e. a cycle which is an induced subgraph of G) is a cycle without chords.

[^0]Proposition 1 Every graph G contains a path of length $\delta(G)$ and a cycle of length $\delta(G)+1$, provided that $\delta(G) \geq 2$. 3

Definition 7 The distance $d_{G}(u, v)($ or $d(u, v)$) of two vertices u and v in a graph G is the length of a shortest u-v-path in G; if there is no such a path we set $d_{G}(u, v)=\infty$.
The diameter of G is denoted by diam (G) and is defined as $\operatorname{diam}(G):=\max _{u, v \in V(G)} d_{G}(u, v)$.

Given a graph G, a vertex $v \in v(G)$ is called a central vertex if its greatest distance form any other vertex is as small as possible. This distance is called the radius of graph G and is denoted by $\operatorname{rad}(G)$, i.e. $\operatorname{rad}(G):=\min _{x \in V(G)} \max _{y \in V(G)} d_{G}(x, y)$.
Question 7 Determine diam $\left(C^{k}\right) r$ and $\operatorname{rad}\left(C^{k}\right)$ of a cycle with k vertices, $k \in \mathbb{Z}, k \geq 3$. Can a graph have more than one central vertex? Do the inequalities $\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq$ $2 \operatorname{rad}(G)$ hold? Are these inequalitioes best possible. i.e. are there particular graphs for which these inequalities are fulfilled with equality?

Definition 8 A graph G with at least one vertex is called connected iff for any two vertices $u, v \in V(G)$ there esists a u-v-path in G. Otherwise G is called disconnected. A set $U \subseteq V(G)$ is called a connected set of vertices in G iff $G[U]$ is connected.
G is called a k-connected graph iff $|G|>k$ and $G-X$ is connected, for all $X \subset V$ with $|X|<k$. The largest nonnegative integer k such that G is k-connected is called the connectivity of graph G and is denoted by $\kappa(G)$.

Question 8 Which graphs are 0-connected? Does 1-connected mean conected? For which graph does $\kappa(G)=0$ hold? Specify a graph G with $|G|=n$ and $\kappa(G)=n-1$, for $n \in \mathbb{N}$.

If $|G|>1$ and $G-F$ is connected for every set $F \subseteq E(G)$ of fewer than ℓ vertices then G is called an ℓ-edge connected graph. The largest nonnegative integer ℓ such that G is ℓ-edge connected is called the edge connectivity of graph G and is denoted by $\lambda(G)$.

Question 9 Specify $\lambda(G)$ for a disconnected graph G. Specify a 2-edge connected graph G with $|G|=n$, for $n \in \mathbb{N}$.

Definition 9 A maximal connected subgraph of a graph G is a component of graph G. By definition a graph without vertices has no components.
Question 10 Are the components of G induced subgraphs of G ? Do their vertex sets partition $V(G)$?

If $A, B \subseteq V(G)$ and $X \subseteq V \cup E$ are such that every $A-B$-path in G contains a vertex or an edge from X, we say that X separates the sets A and B in G. Notice that this implies $A \cap B \subseteq X$.
We say that $X \subset V(G) \cap E(G)$ separates G if $G-X$ is disconnected, i.e. if X separates in G some two vertices that are not in X. A separating set of vertices is called a separator. Separator sets of edges have no generic name, but some of them do (e.g. cuts and bonds, to be defined later).
A vertex which separates two other vertics from the same component is called a cutvertex. An edge which separates its own end-vertices is called a bridge.

[^1]Question 11 Draw some examples of cuts and bridges. Can you characterize bridges by means of cycles?

Definition 10 A graph G is called an acyclic graph or a forest iff it contains no cycles. A connected forest is called a tree. A vertex of degree one in a tree is called a leaf of the tree. A rooted tree is a tree T with a special vertex r in it, $r \in V(T)$, called root of the tree. Given a rooted tree T with root r the tree-order is a partial order \leq on $V(T)$ such that $x \leq y$ iff x lies on the unique r - y-path in T, for all $x, y \in V(T)$.
We think of the tree-order as expressing height, i.e. if $x<y$ (which means that $x \leq y$ and $x \neq y$ hold), we say that x lies below y in T. We denote by $\lceil y\rceil:=\{x \in V(T): x \leq y\}$ the down-closure of y; analogously, we denote by $\lfloor x\rfloor:=\{y \in V(T): y \geq x\}$ the up-closure of x. A set $X \subseteq V(T)$ that equals its up-closure, i.e. which satisfies $X=\lfloor X\rfloor:=\cup_{x \in X}\lfloor x\rfloor$, is said to be closed-upwards or an up-set. A set which is closed-downwards or a downset is defined analogously. The vetices at distance k from the root are said to have height equal to k and form the k-th level of T.

Question 12 Given a tree T with root $r \in V(T)$. Are the end-vertices of any edge $\{x . y\}$ of T comparable in terms of the tree-order, i.e. does $x \leq y$ or $y \leq x$ hold, for all $e=$ $\{x, y\} \in E(T)$? Is the down-closure of every vertex a chain, i.e. a set of pairwise comparable elements?

A rooted tree T with root r contained in a graph G is called a normal tree in G iff all the end-vertices of every T-path in G are comparable in the tree-order of T. Normal spanning trees of a graph G are the so called depth first search trees of G (because of the way they arise in computer searches on graphs).

Question 13 Give the example of a graph G with $|G|=15$ and a normal spanning tree in G. Observe that the following statement holds

Proposition 2 Every connected graph contains a normal spanning tree, with any specified vertex as its root.

[^0]: ${ }^{1}$ Convince yourself that P^{\prime} is indeed a property!
 ${ }^{2}$ This concept and the further concepts within this definition can be analogously defined for digraphs and dipaths.

[^1]: ${ }^{3}$ In contrast to this statement, the minimum degree and the girth are not related to each other.

