## Theorem 1.

(Menger 1927)
(a) (The edge version) Let $s$ and $t$ be two arbitrary vertices of a graph $G$. The maximum number of s-t-paths which do not share an edge equals the minimum cardinality of a set of edges which separates $s$ and $t$ in $G$
(b) (The vertex version) Let $s$ and $t$ be arbitrary vertices of a graph $G$ such that $\{s, t\} \notin E(G)$. The maximum number of independent $s$-t-paths equals the minimum cardinality of an s-t-separator $G$.

## Proposition 1.

Menger's Theorem implies an equivalent definition of connectivity:
(a) (Edge connectivity) A graph $G$ with $|G|>1$ is $\ell$-edge connected, $\ell \in \mathbb{N}$, iff (i) every edge set which separates $G$ has at least $\ell$ elements, or equivalently (ii) $\forall s, t \in V(G)$ there exists $\ell$ edge-disjoint s-t-paths.
(b) (Vertex connectivity) A graph $G$ with $|G|>k, k \in \mathbb{N}$, is $k$-edge connected iff (i) every separater of $G$ has at least $k$ elements, or equivalently (ii) $\forall s, t \in V(G)$ there exists $k$ independent s-t-paths.

## Theorem 2.

If the graph $G$ is non-trivial, i.e. $|G|>1$, the $\kappa(G) \leq \lambda(G) \leq \delta(G)$ holds.
Thus high connectivity implies high minimum degree.
The converse is not true: there are graphs with large $\delta(G)$ which have a small $\lambda(G)$. However a high $\delta(G)$ implies the existence of a highly connected subgraph.

## Proposition 2.

(Mader 1972)
Let $k \in \mathbb{N}, k \neq 0$. Every graph $G$ with $d(G) \geq 4 k$ has a $(k+1)$ connected subgraph $H$ such that $\epsilon(H)=\frac{|E(H)|}{|V(H)|}>\epsilon(G)-k$ holds.

## Observation 3.

The vertices of a connected graph $G$ can always be enumerated as $v_{1}, v_{2}, \ldots, v_{|G|}$ such that the induced subgraph $G_{i}:=G\left[\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}\right]$ is connected, for all $i \in \overline{1,|G|}$.
(The proof is a homework.)

## 2-Connectivity and 3-Connectivity

## Definition 1.

A maximal connected subgraph without a cut vertex is called a block.

## Observation 4.

Every block is either (i) a maximal 2-connected subgraph, or (ii) a bridge, or (iii) an isolated vertex. Conversely, every such graph is a block.

Observation 5.
(a) Different blocks of a graph $G$ overlap in at most one vertex which is then a cut-vertex, (b) every edge of $G$ lies in a unique block, and (c) $G$ is the union of its blocks.

## Definition 2.

The block-cut-vertex graph $b c(G)$ of a given graph $G$ is a graph with vertex set $\mathcal{B} \cup \mathcal{C}$, where $\mathcal{B}$ is the set of blocks of $G$ and $\mathcal{C}$ is the set of cut-vertices of $G$. The edge set of $b c(G)$ consists of edges $\{b, c\}$ with $b \in \mathcal{B}, c \in \mathcal{C}$, and $c \in b$.

## Theorem 6.

(Gallai 1964, Harary and Prins 1966)
The block-cut-vertex graph bc(G) of a connected graph C is a tree.

## Theorem 7.

(Ear decomposition, Whitney 1932, Halin and Jung 1963)
A graph $G$ is 2 -connected iff it can be represented as
$G=C \cup P_{1} \cup P_{2} \cup \ldots \cup P_{k}$, for some $k \in \mathbb{N}$, where $C$ is a cycle and $P_{i}$
$1 \leq i \leq k$, are paths which have only their end-vertices in common with
$C \cup P_{1} \cup \ldots \cup P_{i-1}$.

## Definition 3.

Contraction of an edge
Let $e=\{x, y\}$ be an edge of a graph $G=(V, E)$. We denote by $G / e$ the graph obtained from $G$ by contracting the edge e into a new vertex $v_{e}$ which becomes adjacent to all the former neighbors of $x$ and of $y$.
Formally $G / e:=\left(V^{\prime}, E^{\prime}\right)$, where

$$
\begin{gathered}
V^{\prime}:=V \backslash\{x, y\} \cup\left\{v_{e}\right\} \text { and } \\
E^{\prime}:=\{\{v, w\} \in E:\{v, w\} \cap\{x, y\}=\emptyset\} \cup\left\{\left\{v_{e}, u\right\}:\{x, u\} \in E \text { or }(y, u\} \in E\right\} .
\end{gathered}
$$

More generally, if $X$ is another graph and $\left\{V_{X}: x \in V(X)\right\}$ is a partition of $V$ into connected subsets such that for any two vertices $x, y \in X$ there is a $V_{x}-V_{y}$-edge in $G$ iff $\{x, y\} \in E(X)$, we call $G$ an $M X$ and write $G=M X$. The sets $V_{x}$ are called the branch sets of this $M X$.
Intuitively, $M X$ is obtained from $G$ by contracting every branch set to a single vertex and deleting any parallel edges or loops that may arise.
If $M X=G$ is a subgraph of $Y, G \subseteq Y$, we call $X$ a minor of $Y$ and denote $X \preceq Y$.
Contraction of a set of vertices
If $V_{x}=U \subset V(G)$ is one of the branch sets and every other branch set consists just of a single vertex, we also write $G / U$ for the graph $X$ and $V_{U}$ for the vertex $x \in V(X)$ to which $U$ contracts and think of the rest of $X$ as an induced subgraph of $G$. The contraction of edge $\left\{u, u^{\prime}\right\}$ corresponds to the simple case $U=\left\{u, u^{\prime}\right\}$.

## Proposition 3.

$G$ is an $M X$ iff $G$ can be obtained from $G$ by a series of edge contractions, i.e. iff there exist an $n \in \mathbb{N}$, the graphs $G_{0}, G_{1}, \ldots, G_{n}$ and the edges $e_{i} \in E\left(G_{i}\right)$ such that $G_{0}=G, G_{n} \simeq X$ and $G_{i+1}=G_{i} / e_{i}$ for $0 \leq i \leq n-1$.
Proof: Induction on $|G|-|X|$, homework.

## Lemma 1.

If $G$ is 3 -connected and $|G|>4$, then $G$ has an edge e such that $G / e$ is again 3-connected.

## Theorem 8.

(Tutte 1961) A graph $G$ is 3-connected iff there exits an $n \in \mathbb{N}$ and sequence of graphs $G_{0}, G_{1}, \ldots, G_{n}$ with the following properties:
(i) $G_{0}=K_{n}$ and $G_{n}=G$
(ii) $G_{i+1}$ has an edge $\{x, y\}$ with $\operatorname{deg}_{G_{i+1}}(x) \geq 3, \operatorname{deg}_{G_{i+1}}(y) \geq 3$, and $G_{i}=G_{i+1} /\{x, y\}$, for all $0 \leq i \leq n-1$.

