Computation of the connectivity number $\kappa(G)$

- G = (V, E) is a graph with n := |V|, m := |E|.
 - (i) Check whether $\kappa(G) \ge 1$ holds (G is connected): in linear time O(n+m) time by applying Depth First Search (DFS).
- (ii) Check whether $\kappa(G) \geq 2$ holds (G is 2-connected): in linear time O(n+m) time by applying Depth First Search (DFS).
- (iii) Check whether $\kappa(G) \geq 3$ holds (G is 3-connected): in linear time O(n+m) time, see e.g J.E.Hopcroft and R.E.Tarjan, Dividing a graph into triconnected components, *SIAM J. on Computing* **2**, 1973, 135–158.
- (iv) compute $\kappa(G)$ in $O(n^3\sqrt{m})$ time by a straightforward application of Menger's theorem and the push-relabel algorithm for the max-flow problem. Faster: in $O(\sqrt{n}m^2)$ time by S. Even and R.E.Tarjan, Network flow and testing graph connectivity, *SIAM J. on Computing* **4**, 1975, 507–518.

Computation of the edge-connectivity number $\lambda(G)$

$$G = (V, E)$$
 is a graph with $n := |V|$, $m := |E|$.

Apply Mengers's theorem:

 $\lambda(G)$ equals the minimum cut in G

A minimum cut in G can be computed in $O(mn + n^2 \log n)$ by the Stoe-and-Wagner algorithm (SVA)

M. Stoer and F. Wagner, A simple min-cut algorithm, *Journal of the ACM* **44**, 1997, 585–591.

SVA uses the maximum adjacency order (MA order) and has been discussed in Combinatorial Optimization 1 see also https://en.wikipedia.org/wiki/Stoer-Wagner_algorithm

DFS: definitions and notations

Apply DFS(G, s) for a <u>connected</u> graph G = (V, E) with n := |V|, m := |E|, $s \in V$.

Definition 1.

The edges $\{prec(v), v)\} \in E$, for $v \in V$, are called **tree-edges**. Set $E(T) := \{\{prec(v), v)\}: v \in V\}$ and T := (V, E(T)).

Observe: T is a spanning tree in G and is called the **DFS-tree**. Think of it as beeing rooted at s with tree-order \leq .

Definition 2.

If $v \leq w$ holds, then w is called a **descendant** of v and v is called an **ancestor** of w, for $v, w \in V$. For $v \in V$, let T_v be the tree formed by the descendants of v and rooted at v.

A non-tree edge $\{v,w\} \in E \setminus E(T)$ is called a backward edge starting at v, if DFSNum(w) < DFSNum(v) at the moment where the DFS passes $\{v,w\}$ for the first time starting at v. The set of backward edges is denoted by B.

DFS: definitions and notations

Observe: All non-tree edges are backward edges, i.e. $B = E \setminus E(T)$. For every $\{v, w\} \in B$, $w \prec v$ holds, w is contained in the s-v-path in T.

For $v \in V$ set

$$LowPoint(v) := \min \left\{ \left\{ DFSNum(v) \right\} \cup \left\{ DFSNum(z) \colon v \leq x \,, \{x,z\} \in B \right\} \right\}.$$

Aquivalently: $LowPoint(v) := min(\{DFSNum(v)\} \cup A_v)$, where

$$A_{v} := \left\{ \textit{DFSNum}(z) \colon \{v, z\} \in B \right\} \cup \left\{ \textit{LowPoint}(w) \colon \{v, w\} \in \textit{E}(T) \right\}.$$

Definition 3.

A tree-edge $\{v, w\} \in E(T)$ is called a **leading edge** iff $LowPoint(w) \ge DFSNum(v)$.

DFS and connectivity

Lemma 1.

Let $\{v,w\}$ be a leading edge in T. Consider the subtree $T':=T_w+\{v,w\}$ of T. Consider a backward edge $\{x,y\}\in B$ starting at a vertex $x\in V(T')$. Then $y\in V(T')$ holds.

Theorem 1.

For all $\{v,w\} \in E$, starting at v and ending at w, with $v \in V \setminus \{s\}$ the following holds: $\{v,w\}$ and the tree-edge ending at v (i.e. an $\{u,v\} \in E(T)$) belong to the same block iff (a) $\{v,w\} \in B$ or (b) $\{v,w\} \in E(T)$ and $\{v,w\}$ is not a leading edge.

Theorem 2.

- (a) The root s of T is a cut-vertex (with DFSNum(s) = 1) iff there exist more than one leading edge incident to s.
- (b) A vertex $v \in V \setminus \{s\}$ (with DFSNum(s) > 1) is a cut-vertex iff there exists at least one leading edge starting at v (w.r.t. \preceq).

DFS and connectivity

Theorem 3.

(Tarjan 1972)

The block and the cut-vertices of G can be determined in linear time, i.e. in O(n+m), where n:=|V| and m:=|E|.

Corollary 4.

For a given graph G with n := |G| > 3 and m := |E(G)| it can be tested in O(n+m) time whether $\kappa(G) \ge 2$.

Proof: Observe that G is 2-connected iff bc(G) is a singleton.