Computation of the connectivity number $\kappa(G)$

$G=(V, E)$ is a graph with $n:=|V|, m:=|E|$.
(i) Check whether $\kappa(G) \geq 1$ holds (G is connected): in linear time $O(n+m)$ time by applying Depth First Search (DFS).
(ii) Check whether $\kappa(G) \geq 2$ holds (G is 2-connected): in linear time $O(n+m)$ time by applying Depth First Search (DFS).
(iii) Check whether $\kappa(G) \geq 3$ holds (G is 3 -connected): in linear time $O(n+m)$ time, see e.g J.E.Hopcroft and R.E.Tarjan, Dividing a graph into triconnected components, SIAM J. on Computing 2, 1973, 135-158.
(iv) compute $\kappa(G)$
in $O\left(n^{3} \sqrt{m}\right)$ time by a straightforward application of Menger's theorem and the push-relabel algorithm for the max-flow problem. Faster: in $O\left(\sqrt{n} m^{2}\right)$ time by S . Even and R.E.Tarjan, Network flow and testing graph connectivity, SIAM J. on Computing 4, 1975, 507-518.

Computation of the edge-connectivity number $\lambda(G)$
$G=(V, E)$ is a graph with $n:=|V|, m:=|E|$.
Apply Mengers's theorem:
$\lambda(G)$ equals the minimum cut in G
A minimum cut in G can be computed in $O\left(m n+n^{2} \log n\right)$
by the Stoe-and-Wagner algorithm (SVA)
M. Stoer and F. Wagner, A simple min-cut algorithm, Journal of the ACM 44, 1997, 585-591.

SVA uses the maximum adjacency order (MA order) and has been discussed in Combinatorial Optimization 1
see also https://en.wikipedia.org/wiki/Stoer-Wagner_algorithm

DFS: definitions and notations

Apply $\operatorname{DFS}(G, s)$ for a connected graph $G=(V, E)$ with $n:=|V|$, $m:=|E|, s \in V$.

Definition 1.
The edges $\{\operatorname{prec}(v), v)\} \in E$, for $v \in V$, are called tree-edges. Set $E(T):=\{\{\operatorname{prec}(v), v)\}: v \in V\}$ and $T:=(V, E(T))$.
Observe: T is a spanning tree in G and is called the DFS-tree.
Think of it as beeing rooted at s with tree-order \preceq.

Definition 2.

If $v \preceq w$ holds, then w is called a descendant of v and v is called an ancestor of w, for $v, w \in V$. For $v \in V$, let T_{v} be the tree formed by the descendants of v and rooted at v.
A non-tree edge $\{v, w\} \in E \backslash E(T)$ is called a backward edge starting at v, if $\operatorname{DFSNum}(w)<\operatorname{DFSNum}(v)$ at the moment where the DFS passes $\{v, w\}$ for the first time starting at v. The set of backward edges is denoted by B.

DFS: definitions and notations

Observe: All non-tree edges are backward edges, i.e. $B=E \backslash E(T)$. For every $\{v, w\} \in B, w \prec v$ holds, w is contained in the s - v-path in T.
For $v \in V$ set
LowPoint $(v):=\min \{\{\operatorname{DFSNum}(v)\} \cup\{\operatorname{DFSNum}(z): v \preceq x,\{x, z\} \in B\}\}$.

Aquivalently: $\operatorname{LowPoint}(v):=\min \left(\{\operatorname{DFSNum}(v)\} \cup A_{v}\right)$, where

$$
A_{v}:=\{\operatorname{DFSNum}(z):\{v, z\} \in B\} \cup\{\operatorname{LowPoint}(w):\{v, w\} \in E(T)\} .
$$

Definition 3.

A tree-edge $\{v, w\} \in E(T)$ is called a leading edge iff LowPoint(w) \geq DFSNum(v).

DFS and connectivity

Lemma 1.

Let $\{v, w\}$ be a leading edge in T. Consider the subtree $T^{\prime}:=T_{w}+\{v, w\}$ of T. Consider a backward edge $\{x, y\} \in B$ starting at a vertex $x \in V\left(T^{\prime}\right)$. Then $y \in V\left(T^{\prime}\right)$ holds.

Theorem 1.

For all $\{v, w\} \in E$, starting at v and ending at w, with $v \in V \backslash\{s\}$ the following holds: $\{v, w\}$ and the tree-edge ending at v (i.e. an $\{u, v\} \in E(T)$) belong to the same block iff (a) $\{v, w\} \in B$ or (b) $\{v, w\} \in E(T)$ and $\{v, w\}$ is not a leading edge.

Theorem 2.

(a) The roots of T is a cut-vertex (with $\operatorname{DFSNum}(s)=1$) iff there exist more than one leading edge incident to s.
(b) A vertex $v \in V \backslash\{s\}$ (with $\operatorname{DFSNum}(s)>1$) is a cut-vertex iff there exists at least one leading edge starting at v (w.r.t. \preceq).

DFS and connectivity

Theorem 3.
(Tarjan 1972)
The block and the cut-vertices of G can be determined in linear time, i.e. in $O(n+m)$, where $n:=|V|$ and $m:=|E|$.

Corollary 4.

For a given graph G with $n:=|G|>3$ and $m:=|E(G)|$ it can be tested in $O(n+m)$ time whether $\kappa(G) \geq 2$.
Proof: Observe that G is 2-connected iff $b c(G)$ is a singleton.

