(5) Edge coloring

Observations: A k-regular graph is a Class I graph iff it is 1-factorizable, i.e. if its edge set can be partitioned into k matchings.

A graph G with $|E(G)|>\Delta(G) \nu(G)$ is a Class II graph.
Corollary 12.
(Vizing 1964, Fournier 1973)
Let G be a graph and $S \subseteq V(G)$ the set of nodes with maximum degree in $G, S:=\{v \in v(G): \operatorname{deg}(v)=\Delta(G)\}$. If the induced subgraph $G[S]$ is cycle-free, i.e. a forest, then G is a Class I graph. An edge coloring with $\Delta(G)$ colors can be constructed in $O(|E(G) \| V(G)|)$ time.

Theorem 13.

(Frieze, Jackson, McDiarmid and Reed 1981)
Let p_{n} be the percentage of Class II graphs among graphs on n vertices with a fixed numbering. Then $\forall \epsilon>0$ and n large enough

$$
n^{-\left(\frac{1}{2}+\epsilon\right) n}<p_{n}<n^{-\left(\frac{1}{8}-\epsilon\right) n} \text { holds }
$$

Thus almost all graphs are Class I graphs, graphs of Class II are extremely rare.

(5) Choosability and list coloring

Definition 6.

Let a graph $G=(V, E)$ and a list $L(v)$ of colors for every $v \in V$ be given. A list coloring of G with lists $L(v)$, for $v \in E$, is a mapping $c: V \rightarrow \cup_{v \in V} L(v)$ such that $c(v) \in L(v)$ for all $v \in V$ and $c(v) \neq c(w)$ for all $\{v, w\} \in E$.
A graph G is called k-choosable if for any given lists $L(v), v \in V(G)$, which contain k pairwise different colors each, there exists an list coloring with lists $L(v)$, for $v \in V(G)$. The smallest natural number k for which G is k-choosable is the list chromatic number of $G, \chi_{\ell}(G)$.
Observation: For any graph G the inequality $\chi_{\ell}(G) \geq \chi(G)$ holds.
There are examples where the gap between the two numbers is large.
Theorem 14.
(Alon 1993)
There exists a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that, given any integer k, all graphs G with average degree $d(G) \geq f(k)$, satisfy $\chi_{\ell}(G) \geq k$.
Theorem 15.
(Thomassen 1994)
Every planar graph is 5-choosable.

(5) Edge choosability and edge list coloring

Definition 7.

Let a graph $G=(V, E)$ and a list $L(e)$ of colors for every $e \in E$ be given. A (edge) list coloring of G with lists $L(e)$, for $e \in E$, is a mapping $c: E \rightarrow \cup_{e \in E} L(e)$ such that $c(e) \in L(e)$ for all $e \in E$ and $c(e) \neq c(f)$ forall $e, f \in E$ with $e \cap f \neq \emptyset$.
A graph G is called k-edge-choosable if for any given lists $L(e)$, $e \in E(G)$, which contain k pairwise different colors each, there exists an (edge) list coloring with lists $L(e)$, for $e \in E(G)$. The smallest natural number k for which G is k-edge-choosable is the list chromatic index of $G, \chi_{\ell}^{\prime}(G)$.
Observation: For any graph G the inequality $\chi_{\ell}^{\prime}(G) \geq \chi^{\prime}(G)$ holds.
A conjecture of Vizing: $\chi_{\ell}^{\prime}(G)=\chi^{\prime}(G)$ holds for any graph G.
The conjecture holds for trees and graphs of maximal degree at most 2 (Exercises!)

Theorem 16.
(Galvin 1995)
Bipartite graphs are $\Delta(G)$-edge-choosable.

