(Chapter 5) Coloring: definitions and elementary concepts

Definition 1.

A (feasible) k-coloring of vertices of a given graph G is a mapping $c: V(G) \rightarrow \{1, 2, ..., k\}$ for which $\{u, v\} \in E(G)$ implies $c(u) \neq c(v)$, for any two vertices $u, v \in V(G)$ and some natural number $k \in \mathbb{N}$. We say "the vertex coloring c uses at most k colors" and G is k-colorable. The chromatic number of a graph G, denoted by $\chi(G)$, is the smallest natural number k such that G is k-colorable.

Definition 2.

A (feasible) k-coloring of edges of a given graph G is a mapping $c : E(G) \to \{1, 2, ..., k\}$ for which $e_1 \cap e_2 \neq \emptyset$ implies $c(e_1) \neq c(e_2)$, for any two edges $e_1, 2_2 \in E(G)$ and some natural number $k \in \mathbb{N}$. We say "the edge coloring c uses at most k colors" and G is k-edge colorable. The chromatic index of a graph G, denoted by $\chi'(G)$, is the smallest natural number k such that G is k-edge-colorable.

(5) Coloring: examples and simple bounds

Definition 3.

The **line graph** L(G) of a given graph G is a graph with vertex set E(G), *i.e.* V(L(G)) = E(G), such that two vertices of L(G) are connected by an edge iff the correspondig edges in G have a common endvertex.

Observations:

• $\chi'(G) = \chi(L(G))$ holds for any grpah G

•
$$\chi(K_n) = n$$
, for any $n \in {
m I}{
m N}$

- For any graph G the inequality χ(G) ≥ ω(G) holds, where ω(G) is the clique number of G, i.e. the cardinality of the largest clique in G.
- $\chi(G) = 2$ holds iff G is a bipartite graph.
- For any graph G the inequality χ(G) ≥ |G|/α(G) holds, where α(G) is the stability number of G, i.e. the cardinality of the largest stable set in G.

(5) Coloring: elementary results

Definition 4.

The clique partition number $\theta(G)$ of a given graph G is the smallest number of cliques in which V(G) can be partitioned.

Observation: $\chi(G) = \theta(G^c)$ holds for any graph G.

Theorem 1.

(The four color theorem)

Every planar graph is 4 colorable, i.e. for every planar graph there exists a feasible 4-coloring of its vertices.

K. Appel and W. Haken, Every Planar Map is Four-Colorable, *Contemporary Mathematics* **98**, 1989 N. Robertson, D. Sanders, P.D. Seymour and R. Thomas, The four-color theorem, *Journal of Combinatorial Theory (B)* **70 (1)**, 1997, 2–44.

Theorem 2.

(Grötsch 1959) Every triangle-free planar graph is 3 colorable, i.e. $\chi(G) \leq 3$ holds for every such graph G.

(5) Coloring: the graph k-colorability problem (GC(k))

Instance: A graph G = (V.E), a natural number $k \in \mathbb{N}$. **Question:** Is *G k*-colorable?

Computational complexity results:

GC(2) is polynomially solvable.

For any $k \in \mathbb{N}$, GC(k) is polynomially solvable if $\Delta(G) \leq 3$ (Brooks, 1941)

GC(k) is NP-hard for every fixed $k, k \ge 3$.

GC(3) is NP-hard also for planar graphs G with $\Delta(G) \leq 4$.

M.R. Garey and D.S. Johnson, *Computers and intractability: a guide to the theory of NP-completeness*, W.H. Freeman and Company, NY, 1979.

Proposition 3.

(An upper bound)

Every graph G with m edges satisfies $\chi(G) \leq \frac{1}{2} + \sqrt{2m + \frac{1}{4}}$.

(5) Coloring: the greedy algorithm for vertex coloring (GREEDY)

Input: A graph G = (V, E)**Output:** A feasible *k*-coloring $c: V \to \mathbb{N}$ for some (unknown) $k \in \mathbb{N}$

Step 1 Enumerate vertices of G arbitrarily as v_1, \ldots, v_n , where n := |V|.

Step 2 For i = 1 to n do:

color v_i with the smallest color $c(v_i) \in \mathbb{N}$ such that $c(v_j) \neq c(v_i)$ for all $v_j \in N(v_i) \cap \{v_1, \dots, v_{i-1}\}$.

Remarks:

- (1) GREEDY never uses more that $\Delta(G) + 1$ colors.
- (2) If (a) G = K_n or (b) G = C_n and n is odd, then GREEDY produces a χ(G)-coloring.
- (3) In general $\Delta(G) + 1$ is a loose bound for $\chi(G)$ and also for the number of colors needed by the greedy algorithm.

(5) Coloring: the greedy algorithm for vertex coloring (GREEDY)

GREEDY colors v_i by $c(v_i) = deg_{G[\{v_1, v_2, \dots, v_i\}]}(v_i) + 1$.

Idea: Choose an approriate ordering of vertices in Step 1 such that the number of colors used by GREEDY is small!

Example of an ordering: Choose v_n such that $\delta(G) = deg(v_n)$ first, then choose v_{n-1} as the vertex with the smallest degree in $G[V \setminus \{v_n\}]$, and so on.

Definition 5.

The coloring number of G, denoted by col(G), is the smallest number $k \in \mathbb{N}$ such that there exists an ordering of vertices in G with the property that every vertex is preceded by fewer than k of its neighbors.

Proposition 4.

Every graph satisfies $\chi(G) \leq col(G) = \max\{\delta(H) \colon H \subseteq G\} + 1$.

Corollary 5.

Every graph has a subgraph of minimum degree at least $\chi(G) - 1$.

(5) Coloring: the theorem of Brooks

Theorem 6.

(Brooks 1941) Let G be a connected graph. If G is neither complete nor an odd cycle than $\chi(G) \leq \Delta(G)$.

Questions: Is there any relationship between $\chi(G)$, $\kappa(G)$ and $\delta(G)$?

No, neither implies a large $\chi(G)$ a large $\kappa(G)$ or $\delta(G)$, nor imply large values $\kappa(G)$ or $\delta(G)$ a large $\chi(G)$.

Theorem 7.

(Erdös 1959) For all $k \in \mathbb{N}$, there exists a graph G with girth g(G) > k and chromatic number $\chi(G) > k$.

Erdös' theorem shows that a large chromatic number can occur as a purely global phenomenon in a graph!