
(Chapter 6) Chordal graphs: definitions and characterisations

Definition 7.
(Hajnal, Surányi 1958)
A graph G is called chordal iff G contains no cycle of length k , k ≥ 4,
as an induced subgraph. Equivalently, G is chordal iff there is a chord for
every cycle of length k , k ≥ 4, in G , i.e. there is an edge {x , y} ∈ E (G )
connecting two non-consecutive vertices in C , x , y ∈ V (C ),
{x , y} 6∈ E (C ).

Trivial example: complete graph Kn, n ∈ IN, are chordal.

Observation: A bipartite graph is chordal iff it is a forest.

Lemma 10.
(Dirac 1961)
A graph G is chordal iff every separator which is minimal with respect to
set-inclusion induces a clique in G .
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Definition 8.
Let G be a graph and let x be a vertex in V (G ). x is called a simplicial
vertex if the neighbors NG (v) induce a clique in G .

Lemma 11.
(Dirac 1961)
Let G be a chordal graph G . Then G contains a simplicial vertex. If G is
not a complete graph, then it contains two non-adjacent simplicial
vertices.

Theorem 12.
(Berge 1961, Hajnal, Surányi 1958)
Chordal graphs and their complements are perfect.

Definition 9.
A labelling (or a total order) σ : V (G )→ {1, 2, . . . , |G |} on the vertex set
V (G ) of a graph G is called a perfect vertex elimination scheme
(PSE) iff every v ∈ V (G ) is a simplicial vertex in
G [{u ∈ V (G ) : σ(u) ≥ σ(v)}], i.e. iff the so-called upper neighborhood
UN(v) of v , builds a clique in G , for every v ∈ V (G ), where
UN(v) = {u ∈ N(v) : σ(u) ≥ σ(v)}.
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Theorem 13.
(Fulkerson, Gross 1965)
A graph G is chordal iff it has a perfect vertex elimination scheme.

Definition 10.
A maximum adjacency order (MAO) in a graph G is a labelling
σ : V (G )→ {1, 2, . . . , |G |} constructed iteratively as follows. Set
σ(v1) = 1 for some arbitrarily chosen vertex v1 and repeat iteratively the
following step: for all i = 1 to n − 1 set σ(v) = i + 1 for some
v ∈ V (G ) \ {v1, . . . , vi} with the maximum number of neighbors among
in {v1, . . . , vi}, i.e.
deg{v1,...,vi}(v) = max

{
deg{v1,...,vi}(x) : x ∈ V (G ) \ {v1, . . . , vi}

}
.

Remark: MAO is not uniquely defined.

Proposition 14.
A labelling σ : V (G )→ {1, 2, . . . , |G |} is a PES in a graph G iff the
following implication holds: for any vi , vj ∈ V (G ), vi 6= vj , the existence
of a vi -vj -path P such that all σ(u) < min{σ(vi ), σ(vj)} holds for all its

internal nodes u (u ∈ P̊), implies {vi , vj} ∈ E (G ).
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Proposition 15.
Let G be a chordal graph and σ : V (G )→ {1, 2, . . . , n}, n := |G |, be a
MAO in G with σ(vi ) = i , for all i ∈ {1, 2, . . . , n}.
Then the labelling σ̃ : V (G )→ {1, 2, . . . , |G |} with σ̃(vi ) = n − i + 1, for
all i ∈ {1, 2, . . . , n}, is a PES in G .

The recognition problem for chordal graphs
Input: A graph G = (V ,E ).
Question: Is G chordal?

Theorem 16.
The recognition problem for a chordal graph G can be solved in
O(m + n log n) time, where n := |V (G )| and m := |E (G )|.
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Proposition 17.
Let G = (V ,E ) be a graph and let σ : V (G )→ {1, 2, . . . , n}, n := |G |,
be a MAO in G with σ(vi ) = i , for all i ∈ {1, 2, . . . , n}. Consider the
labelling σ̃ : V (G )→ {1, 2, . . . , |G |} with σ̃(vi ) = n − i + 1, for all
i ∈ {1, 2, . . . , n}. The following equivalence holds: G is chordal iff σ̃ is a
PES in G .

A generic algorithm to decide whether a graph G is chordal
Input: G = (V ,E ) with n = |V |, m = |E |, ∀v ∈ V , Adj(v) ⊂ V the set
of all vertices adjacent to v .
Output: TRUE, if G is chordal, and FALSE, otherwise.

(1) Determine an MAO σ : V → 1, n in G .

(Can be done in O(m + nlogn) time by using Fibonacci heaps.)

(2) Compute σ̃ : V → 1, n with σ̃(σ−1(n − i + 1)) = i for i ∈ 1, n.)

(Can be done in O(m) time.)

(3) Check whether σ̃ is a PES in G .

(Can be done in O(n + m) time by using the leader fv of the upper
neighborhood UN(v), where fv := argmin {σ̃(u) : u ∈ UN(v)} for all
v ∈ V .)



(6) Chordal graphs: computation of graph invariants and
optimization problems

Proposition 18.
Let G be a chordal graph with a PES σ. All maximal cliques of G can be
found among (Cv )v∈V (G), where Cv := {v} ∪ UN(v), for all v ∈ V (G ).
Thus G has at most n maximal cliques. Moreover G has exactly n
maximal cliques iff E (G ) = ∅.
The largest clique in G is Cv∗ with |C∗v | = max{|Cv | : v ∈ V (G )} and
ω(G ) = |C∗v |.

Proposition 19.
Let G be a chordal graph with a PES σ. Construct the set of vertices
S := {s1, . . . , sl} iteratively as follows for some l ∈ IN: s1 = σ−1(1) and
∀k ≤ 2, k ∈ IN set

sk := argmin
{
σ(v) : σ(v) > σ(sk−1) and v 6∈ ∪k−1i=1 UN(si )

}
als long as the set on the right hand side of the above equality is
nonempty.
Then S is a maximum stable set in G , (Csk )k∈1,l is a clique cover of
minimum cardinality in G , and α(G ) = θ(G ) = l holds.
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Definition 11.
A graph G is called a comparability graph if there exists an order
relation P≤ on V (G ) such that ∀{x , y} ∈ E (G ) the vertices x and y are
comparable in P≤, i.e. xP≤y or yP≤x .

Lemma 20.
G is a comparability graph iff G is transitively orientable, i.e. there
exists an orientation o : E (G )→ V (G )× V (G ) which assigns an
orientation to every edge {u, v} (making a directed edge, or an arc,
(u, v) or (v , u) out of {u, v}) such that (x , y) ∈ O and (x , z) ∈ O
implies (x , z) ∈ O.

Example: Any bipartite graph G = (U∪̇V ,E ) is a comparability graphs.
A partial order P≤ on U∪̇V can be defined by

uP≤v ⇔ ({u, v} ∈ E , u ∈ U, y ∈ V ) or (u = v) .

An orientation O is in Lemma 20 is obtained by orienting every edge
from U to V .
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Recall Dilworth’s theorem and its dual:

Theorem 21.
(Dilworths’s theorem)
Let P≤ be a partial order on a finite set M. The length of a longest
antichain in (M,O≤) equals the minimum number of chains in a chain
decomposition of M.

Theorem 22.
Let P≤ be a partial order on a finite set M. The length of a longest chain
in (M,O≤) equals the minimum number of antichains needed to cover M
by antichains.

Corollary 23.
Comparability graphs are perfect graphs.

Observation: Let G be a comparability graph and let P≤ be a partial
order as in Definition 11. Then cliques in G correspond to chains in
(V (G ),P≤) and stable sets in G correspond to antichains in (V (G ),P≤).
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Proposition 24.
Comparability graphs with n vertices and m edges can be recognized in
O(n + m) time.

R.M. McConnell and J. Spinrad, Modular decomposition and transitive
orientation, Discrete Mathematics 201, 1999, 189-241.
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Definition 12.
G is called an interval graph iff G is the intersection graph of a family of
closed intervals ([ai , bi ])i∈I in IR, where ai ≤ bi , ∀i ∈ I . In other words,
G is an interval graph, iff there exists a bijection f : V (G )→ I such that
∀x , y ∈ V (G ), x 6= y , the equivalence {x , y} ∈ E (G )⇔ f (x) ∩ f (y) 6= ∅
holds.

Theorem 25.
(Gilmore, Hoffman 1964)
For a given graph G the following statements are equivalent:

(i) G is an interval graph,

(ii) G does not contain an induced cycle of length at least 4 and the
complement Ḡ is a comparability graph,

(iii the maximum cliques of G can be ordered linearly such that
∀v ∈ V (G ) the maximum cliques containing v build a contiguous
interval in that order. In other words, there exists a sequence C1,
C2, . . ., Ck of all maximum cliques in G , for some k ∈ IN, such that
∀v ∈ V (G ), there exist iv ∈ 1, k and an nv ∈ IN with iv + nv ≤ k
such that the maximum cliques of G containing V are Civ ,Civ+1,
. . ., Civ+nv .
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Theorem 26.
Interval graphs are perfect graphs.

Proposition 27.
Interval graphs with n vertices and m edges can be recognized in
O(n + m) time.

K. Simon, A simple linear time algorithm to recognize interval graphs, H.
Bieri and H. Noltemeier, eds., Springer, Lecture Notes in Computer
Science 553, 1991, 289-308.


