Random trees and absolutely continuous spectrum

Matthias Keller, FSU Jena, joint work with Daniel Lenz and Simone Warzel

St. Kathrein, den 04.07.2009

1. The Laplace operator

Let $G=(V, E)$ be a graph.
The Laplace operator $\Delta=\Delta_{G}$ on $\ell^{2}(V)$ be given by

$$
(\Delta \varphi)(x)=\sum_{\{x, y\} \in E}(\varphi(x)-\varphi(y)) .
$$

Trees of finitely many cone types

Let $\mathcal{A}=\{1, \ldots, N\}$ be a set of labels and

$$
M: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{N}, \quad(j, k) \mapsto m_{j, k}
$$

Construct a tree $T_{M}=(V, E)$ with vertices labeled by \mathcal{A} in the following way:
(i) Let the root have label $i \in \mathcal{A}$.
(ii) A vertex with label j has exactly $m_{j, k}$ forward neighbors of label k.

The spectrum of Δ on T_{M}

This construction gives a tree $T_{M}=(V, E)$ with finitely many cone types, where every cone type has every cone type as forward neighbor.

Theorem. (K., Lenz, Warzel) The spectrum consists of finitely many intervalls

$$
\sigma\left(\Delta_{T_{M}}\right)=\sigma_{\text {a.c }}\left(\Delta_{T_{M}}\right) \quad \text { and } \quad \sigma_{\text {sing }}\left(\Delta_{T_{M}}\right)=\emptyset .
$$

Percolating $E \backslash E^{\prime}$

For each $x \in T_{M}$ fix $x^{\prime} \succ x$, such that if x and y have the same label then x^{\prime} and y^{\prime} have the same label. Set

$$
E^{\prime}=\left\{\left\{x, x^{\prime}\right\} \mid x \in V\right\}
$$

Let $p \in[0,1]$ and θ random variables

$$
\theta: E \backslash E^{\prime} \rightarrow\{0,1\}
$$

such that $\{\theta(e)\}$ are independent and

$$
\mathbb{P}(\theta(e)=1)=p \quad \text { and } \quad \mathbb{P}(\theta(e)=0)=1-p
$$

The trees T_{θ} and the operators Δ_{θ}

Let $T_{\theta}=\left(V, E_{\theta}\right) \subset T_{M}$ such that

$$
E_{\theta}=E^{\prime} \cup\left\{e \in E \backslash E^{\prime} \mid \theta(e)=1\right\}
$$

Define Δ_{θ} on $\ell^{2}(V)$ by

$$
\left(\Delta_{\theta} \varphi\right)(x)=\sum_{\{x, y\} \in E_{\theta}} \varphi(x)-\varphi(y)
$$

Absolutely continuous spectrum on T_{θ}

Theorem. (K., Lenz, Warzel)
Let $I \subset \sigma\left(\Delta_{T_{M}}\right) \backslash \Sigma_{0}$ closed, where Σ_{0} is finite. Then there exists $p_{0}<1$ such that for all $p \in\left[p_{0}, 1\right]$ and almost every θ

$$
I \subset \sigma_{\text {a.c }}\left(\Delta_{\theta}\right) \quad \text { and } \quad I \cap \sigma_{\text {sing }}\left(\Delta_{\theta}\right)=\emptyset
$$

Absolutely continuous spectrum on T_{θ}

Theorem. (K., Lenz, Warzel)
Let $I \subset \sigma\left(\Delta_{T_{M}}\right) \backslash \Sigma_{0}$ closed, where Σ_{0} is finite. Then there exists $p_{0}<1$ such that for all $p \in\left[p_{0}, 1\right]$ and almost every θ

$$
I \subset \sigma_{\mathrm{a} . \mathrm{c}}\left(\Delta_{\theta}\right) \quad \text { and } \quad I \cap \sigma_{\mathrm{sing}}\left(\Delta_{\theta}\right)=\emptyset .
$$

For the presentation of some key ideas of the proof we restrict ourselves to the special case $\mathcal{A}=\{1\}$ and $M=k$, i.e. the k-regular tree.

Some ideas of the proof

Let $T_{x} \subset T_{M}$ be the forward cone starting at $x \in T_{M}$. Denote the Green's function by

$$
\begin{aligned}
g_{x}^{\theta}(z) & =\left\langle\delta_{x},\left(\left.\Delta_{\theta}\right|_{T_{x}}-z\right)^{-1} \delta_{x}\right\rangle \\
G_{x}(z) & =\left\langle\delta_{x},\left(\left.\Delta\right|_{T_{x}}-z\right)^{-1} \delta_{x}\right\rangle
\end{aligned}
$$

Define

$$
\gamma_{x}=\frac{\left|g_{x}^{\theta}-G_{x}\right|^{2}}{\Im g_{x}^{\theta} \Im G_{x}} .
$$

We want to prove:

$$
\mathbb{E}\left(\gamma_{x}\right) \leq C, \quad \text { all } \Re z \in I
$$

Some ideas of the proof II

By the recursion formulas for the Green's function :
(1) If $\theta(e)=1$ for all $y \succ x$ and $v \succ x^{\prime}$
$\gamma_{x}=\sum_{\{x, y\} \in E} \frac{1}{k} c_{y} \gamma_{y}=\sum_{\substack{\{x, y\} \in E \\ y \neq x^{\prime}}} \frac{1}{k} c_{y} \gamma_{y}+\sum_{\left\{v, x^{\prime}\right\} \in E} \frac{1}{k^{2}} c_{v} \gamma_{v}$
(2) Otherwise there are $C, c>0$

$$
\gamma_{x} \leq C\left(\sum_{\substack{\{x, y\} \in E \\ y \neq x^{\prime}}} \frac{1}{k} \gamma_{y}+\sum_{\substack{ \\\left\{v, x^{\prime}\right\} \in E}} \frac{1}{k^{2}} \gamma_{v}\right)+c .
$$

Some ideas of the proof III

$$
\begin{aligned}
\mathbb{E}\left(\gamma_{x} \mid(1)\right) & =\mathbb{E}\left(\left.\sum_{y \succ x} \frac{c_{y} \gamma_{y}}{k}+\sum_{v \succ x^{\prime}} \frac{c_{v} \gamma_{v}}{k^{2}} \right\rvert\,(1)\right) \\
& (!)(1-\delta) \mathbb{E}\left(\left.\sum_{y \succ x} \frac{\gamma_{y}}{k}+\sum_{v \succ x^{\prime}} \frac{\gamma_{v}}{k^{2}} \right\rvert\,(1)\right) \\
& =(1-\delta) \mathbb{E}\left(\gamma_{x}\right)
\end{aligned}
$$

Some ideas of the proof III

$$
\begin{aligned}
\mathbb{E}\left(\gamma_{x} \mid(1)\right) & =\mathbb{E}\left(\left.\sum_{y \succ x} \frac{c_{y} \gamma_{y}}{k}+\sum_{v \succ x^{\prime}} \frac{c_{v} \gamma_{v}}{k^{2}} \right\rvert\,(1)\right) \\
& \stackrel{(!)}{\leq}(1-\delta) \mathbb{E}\left(\left.\sum_{y \succ x} \frac{\gamma_{y}}{k}+\sum_{v \succ x^{\prime}} \frac{\gamma_{v}}{k^{2}} \right\rvert\,(1)\right) \\
& =(1-\delta) \mathbb{E}\left(\gamma_{x}\right) \\
\mathbb{E}\left(\gamma_{x} \mid(2)\right) & \leq C \mathbb{E}\left(\left.\sum_{y \succ x} \frac{\gamma_{y}}{k}+\sum_{v \succ x^{\prime}} \frac{\gamma_{v}}{k^{2}} \right\rvert\,(2)\right)+c \\
& =C \mathbb{E}\left(\gamma_{x}\right)+c
\end{aligned}
$$

Some ideas of the proof IV

Let $n=2 k-1$

$$
\begin{aligned}
\mathbb{E}\left(\gamma_{x}\right) & =p^{n} \mathbb{E}\left(\gamma_{x} \mid(1)\right)+\left(1-p^{n}\right) \mathbb{E}\left(\gamma_{x} \mid(2)\right) \\
& \leq\left((1-\delta) p^{n}+C\left(1-p^{n}\right)\right) \mathbb{E}\left(\gamma_{x}\right)+c .
\end{aligned}
$$

Hence for $p^{n}>\frac{1}{1+\delta /(C-1)}$

$$
\mathbb{E}\left(\gamma_{x}\right) \leq\left(1-\delta^{\prime}\right) \mathbb{E}\left(\gamma_{x}\right)+c
$$

Thus

$$
\mathbb{E}\left(\gamma_{x}\right) \leq \frac{c}{\delta^{\prime}}
$$

What is c_{y}

Let $y \succ v$

$$
c_{y}=\sum_{x \in S_{v}} \frac{\Im g_{x}^{\theta}}{\sum_{u \in S_{x}} \Im g_{u}^{\theta}} Q_{x, y} \cos \alpha_{x, y}
$$

while

$$
Q_{x, y}=\frac{\left(\Im g_{x}^{\theta} \Im g_{y}^{\theta} \Im G_{x} \Im G_{y} \gamma_{x} \gamma_{y}\right)^{\frac{1}{2}}}{\frac{1}{2}\left(\Im g_{x}^{\theta} \Im G_{y} \gamma_{y}+\Im g_{y}^{\theta} \Im G_{x} \gamma_{x}\right)}
$$

and

$$
\alpha_{x, y}=\arg \left(\left(g_{x}^{\theta}-G_{x}\right) \overline{\left(g_{y}^{\theta}-G_{y}\right)}\right) .
$$

What is different if $\mathcal{A} \neq\{1\}$

○ (1):

$$
\gamma_{x}=\sum_{y} \frac{\Im G_{y}}{\sum_{u \in S_{x}} \Im G_{u}} c_{y} \gamma_{y}+\frac{\Im G_{x^{\prime}}}{\sum_{u \in S_{x}} \Im G_{u}} \sum_{v} \frac{\Im G_{y}}{\sum_{u \in S_{x^{\prime}}} \Im G_{u}} c_{v} \gamma_{v}
$$

o (2) analogue
o (!) Instead of all permutations take only those who leave the label invariant. Analysis of the contraction coefficient!
o Peron/Frobenius Theorem

